A298525 Decimal expansion of lim_ {n->oo} (s(0) + s(1) + ... + s(n) - (n+1)*g), where g = 1.790044015672757..., s(n) = (s(n - 1) + sqrt(2))^(1/2), s(0) = 2.
2, 8, 9, 9, 3, 2, 1, 8, 5, 6, 6, 4, 4, 7, 9, 5, 7, 4, 0, 7, 4, 1, 4, 7, 5, 1, 2, 3, 4, 6, 1, 5, 1, 0, 5, 8, 8, 1, 3, 1, 7, 0, 9, 3, 9, 4, 5, 2, 9, 1, 2, 1, 6, 1, 9, 8, 7, 9, 1, 7, 8, 5, 1, 4, 4, 8, 7, 2, 5, 7, 6, 1, 5, 0, 1, 7, 9, 7, 2, 2, 0, 0, 0, 1, 9, 6
Offset: 0
Examples
s(0) + s(1) + ... + s(n) - (n+1)*g -> 0.289932185664479574074147512346151058813...
Programs
-
Mathematica
s[0] = 2; d = Sqrt[2]; p = 1/2; g = (x /. NSolve[x^(1/p) - x - d == 0, x, 200])[[2]] s[n_] := s[n] = (s[n - 1] + d)^p N[Table[s[n], {n, 0, 30}]] s = N[Sum[- g + s[n], {n, 0, 200}], 150 ]; RealDigits[s, 10][[1]] (* A298525 *)
Comments