This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298534 #7 Jan 22 2018 03:07:29 %S A298534 1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,22,23,24,25,27,29,30, %T A298534 31,32,33,36,37,40,41,43,44,45,47,48,49,50,53,54,55,59,60,61,62,64,66, %U A298534 67,71,72,73,75,79,80,81,83,88,89,90,91,93,96,97,99,100 %N A298534 Matula-Goebel numbers of rooted trees such that every branch of the root has the same number of leaves. %e A298534 Sequence of trees begins: %e A298534 1 o %e A298534 2 (o) %e A298534 3 ((o)) %e A298534 4 (oo) %e A298534 5 (((o))) %e A298534 6 (o(o)) %e A298534 7 ((oo)) %e A298534 8 (ooo) %e A298534 9 ((o)(o)) %e A298534 10 (o((o))) %e A298534 11 ((((o)))) %e A298534 12 (oo(o)) %e A298534 13 ((o(o))) %e A298534 15 ((o)((o))) %e A298534 16 (oooo) %e A298534 17 (((oo))) %e A298534 18 (o(o)(o)) %e A298534 19 ((ooo)) %e A298534 20 (oo((o))) %e A298534 22 (o(((o)))) %e A298534 23 (((o)(o))) %e A298534 24 (ooo(o)) %e A298534 25 (((o))((o))) %e A298534 27 ((o)(o)(o)) %e A298534 29 ((o((o)))) %e A298534 30 (o(o)((o))) %t A298534 nn=2000; %t A298534 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A298534 leafcount[n_]:=If[n===1,1,With[{m=primeMS[n]},If[Length[m]===1,leafcount[First[m]],Total[leafcount/@m]]]]; %t A298534 Select[Range[nn],SameQ@@leafcount/@primeMS[#]&] %Y A298534 Cf. A000081, A007097, A061775, A111299, A214577, A276625, A290760, A290822, A291442, A298533, A298536. %K A298534 nonn %O A298534 1,2 %A A298534 _Gus Wiseman_, Jan 20 2018