This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298536 #6 Jan 22 2018 03:07:40 %S A298536 1,2,3,5,7,11,13,14,17,19,21,23,26,29,31,34,35,37,38,39,41,43,46,47, %T A298536 51,53,57,58,59,61,65,67,69,71,73,74,77,79,82,83,85,86,87,89,94,95,97, %U A298536 101,103,106,107,109,111,113,115,118,122,123,127,129,131,133 %N A298536 Matula-Goebel numbers of rooted trees such that every branch of the root has a different number of leaves. %e A298536 Sequence of trees begins: %e A298536 1 o %e A298536 2 (o) %e A298536 3 ((o)) %e A298536 5 (((o))) %e A298536 7 ((oo)) %e A298536 11 ((((o)))) %e A298536 13 ((o(o))) %e A298536 14 (o(oo)) %e A298536 17 (((oo))) %e A298536 19 ((ooo)) %e A298536 21 ((o)(oo)) %e A298536 23 (((o)(o))) %e A298536 26 (o(o(o))) %e A298536 29 ((o((o)))) %e A298536 31 (((((o))))) %e A298536 34 (o((oo))) %e A298536 35 (((o))(oo)) %e A298536 37 ((oo(o))) %e A298536 38 (o(ooo)) %e A298536 39 ((o)(o(o))) %e A298536 41 (((o(o)))) %e A298536 43 ((o(oo))) %e A298536 46 (o((o)(o))) %e A298536 47 (((o)((o)))) %t A298536 nn=2000; %t A298536 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A298536 leafcount[n_]:=If[n===1,1,With[{m=primeMS[n]},If[Length[m]===1,leafcount[First[m]],Total[leafcount/@m]]]]; %t A298536 Select[Range[nn],UnsameQ@@leafcount/@primeMS[#]&] %Y A298536 Cf. A000081, A007097, A061775, A111299, A214577, A276625, A290689, A290760, A291442, A298534, A298535. %K A298536 nonn %O A298536 1,2 %A A298536 _Gus Wiseman_, Jan 20 2018