A298537 Number of unlabeled rooted trees with n nodes such that every branch of the root has the same number of nodes.
1, 1, 2, 3, 6, 10, 25, 49, 127, 291, 766, 1843, 5003, 12487, 34151, 87983, 242088, 634848, 1763749, 4688677, 13085621, 35241441, 98752586, 268282856, 755353825, 2067175933, 5837592853, 16087674276, 45550942142, 126186554309, 358344530763, 997171512999
Offset: 1
Keywords
Examples
The a(5) = 6 trees: ((((o)))), (((oo))), ((o(o))), ((ooo)), ((o)(o)), (oooo).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
r[n_]:=r[n]=If[n===1,1,Sum[Product[Binomial[r[x]+Count[ptn,x]-1,Count[ptn,x]],{x,Union[ptn]}],{ptn,IntegerPartitions[n-1]}]]; Table[If[n===1,1,Sum[Binomial[r[(n-1)/d]+d-1,d],{d,Divisors[n-1]}]],{n,40}]
Formula
a(n + 1) = Sum_{d|n} binomial(A000081(n/d) + d - 1, d).