cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A298537 Number of unlabeled rooted trees with n nodes such that every branch of the root has the same number of nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 25, 49, 127, 291, 766, 1843, 5003, 12487, 34151, 87983, 242088, 634848, 1763749, 4688677, 13085621, 35241441, 98752586, 268282856, 755353825, 2067175933, 5837592853, 16087674276, 45550942142, 126186554309, 358344530763, 997171512999
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2018

Keywords

Examples

			The a(5) = 6 trees: ((((o)))), (((oo))), ((o(o))), ((ooo)), ((o)(o)), (oooo).
		

Crossrefs

Programs

  • Mathematica
    r[n_]:=r[n]=If[n===1,1,Sum[Product[Binomial[r[x]+Count[ptn,x]-1,Count[ptn,x]],{x,Union[ptn]}],{ptn,IntegerPartitions[n-1]}]];
    Table[If[n===1,1,Sum[Binomial[r[(n-1)/d]+d-1,d],{d,Divisors[n-1]}]],{n,40}]

Formula

a(n + 1) = Sum_{d|n} binomial(A000081(n/d) + d - 1, d).

A298540 Matula-Goebel numbers of rooted trees such that every branch of the root has a different number of nodes.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
5  (((o)))
6  (o(o))
7  ((oo))
10 (o((o)))
11 ((((o))))
13 ((o(o)))
14 (o(oo))
15 ((o)((o)))
17 (((oo)))
19 ((ooo))
21 ((o)(oo))
22 (o(((o))))
23 (((o)(o)))
26 (o(o(o)))
29 ((o((o))))
30 (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    nn=500;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGweight[n_]:=If[n===1,1,1+Total[MGweight/@primeMS[n]]];
    Select[Range[nn],UnsameQ@@MGweight/@primeMS[#]&]
Showing 1-2 of 2 results.