A298564 a(n) = (3^(n+2)+11)/2 - 5*2^(n+1) + 2*n.
0, 1, 10, 53, 218, 789, 2658, 8581, 26986, 83477, 255506, 776709, 2350554, 7092565, 21359554, 64242437, 193054922, 579820053, 1740770802, 5224933765, 15680044090, 47050617941, 141172825250, 423560418693, 1270765142058, 3812463198229, 11437725138898, 34313846505221, 102942881692826
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-17,17,-6)
Programs
-
Mathematica
Array[(3^(# + 2) + 11)/2 - 5*2^(# + 1) + 2 # &, 29, 0] (* or *) CoefficientList[Series[x (1 + 3 x)/((3 x - 1) (2 x - 1) (x - 1)^2), {x, 0, 28}], x] (* Michael De Vlieger, Jan 21 2018 *)
-
PARI
A298564(n)=2*n-5<<(n+1)+3^(n+2)\2+5
-
Python
def A298564list(n): def generator(): a, b, c = 5, 3, 0 while True: yield c a *= 2 b *= 3 c += 2 - a + b a = generator() return [next(a) for _ in range(n)] print(A298564list(29)) # Peter Luschny, Jan 22 2018
Formula
G.f.: x*(1+3*x) / ( (3*x-1)*(2*x-1)*(x-1)^2 ). - R. J. Mathar, Jan 21 2018
Comments