This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298592 #36 Dec 27 2024 08:48:17 %S A298592 1,2,1,8,5,3,50,34,25,16,432,307,243,189,125,4802,3506,2881,2401,1921, %T A298592 1296,65536,48729,40953,35328,30208,24583,16807,1062882,800738,683089, %U A298592 601441,531441,461441,379793,262144,20000000,15217031,13119879,11708091,10546875,9453125,8291909,6880121,4782969 %N A298592 Triangle read by rows: T(n,k) = number of parking functions of length n whose lead number is k. %H A298592 Steve Butler, Kimberly Hadaway, Victoria Lenius, Preston Martens, and Marshall Moats, <a href="https://arxiv.org/abs/2412.07873">Lucky cars and lucky spots in parking functions</a>, arXiv:2412.07873 [math.CO], 2024. See p. 6. %H A298592 D. Foata and J. Riordan, <a href="https://doi.org/10.1007/BF01834776">Mappings of acyclic and parking functions</a>, J. Aeq. Math., 10 (1974) 10-22. %F A298592 T(n,k) = Sum_{j=k..n} binomial(n-1, j-1)*j^(j-2)*(n+1-j)^(n-1-j). %F A298592 T(n,k) = A298593(n,k)/n. %F A298592 T(n,k) = Sum_{j=k..n} A298594(n,j). %F A298592 T(n,k) = (Sum_{j=k..n} A298597(n,j))/n. %F A298592 Sum_{k=1..n} T(n,k) = A000272(n+1). %e A298592 Triangle begins: %e A298592 1; %e A298592 2, 1; %e A298592 8, 5, 3; %e A298592 50, 34, 25, 16; %e A298592 432, 307, 243, 189, 125; %e A298592 4802, 3506, 2881, 2401, 1921, 1296; %e A298592 65536, 48729, 40953, 35328, 30208, 24583, 16807; %e A298592 1062882, 800738, 683089, 601441, 531441, 461441, 379793, 262144; %e A298592 ... %t A298592 Table[Sum[Binomial[n - 1, j - 1] j^(j - 2)*(n + 1 - j)^(n - 1 - j), {j, k, n}], {n, 9}, {k, n}] // Flatten (* _Michael De Vlieger_, Jan 22 2018 *) %Y A298592 Cf. A000272, A298593, A298594, A298597. %K A298592 easy,nonn,tabl %O A298592 1,2 %A A298592 _Rui Duarte_, Jan 22 2018