cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298593 Triangle read by rows: T(n,k) = number of times the value k appears on the parking functions of length n.

This page as a plain text file.
%I A298593 #42 Mar 05 2018 04:19:43
%S A298593 1,4,2,24,15,9,200,136,100,64,2160,1535,1215,945,625,28812,21036,
%T A298593 17286,14406,11526,7776,458752,341103,286671,247296,211456,172081,
%U A298593 117649,8503056,6405904,5464712,4811528,4251528,3691528,3038344,2097152,180000000,136953279,118078911,105372819,94921875,85078125,74627181,61921089,43046721
%N A298593 Triangle read by rows: T(n,k) = number of times the value k appears on the parking functions of length n.
%C A298593 T(n,k) is the number of pairs (f,i) such that f is a parking function and f(i) = k.
%F A298593 T(n,k) = n*Sum_{j=k..n} binomial(n-1, j-1)*j^(j-2)*(n+1-j)^(n-1-j).
%F A298593 T(n,k) = n*A298592(n,k).
%F A298593 T(n,k) = n*Sum_{j=k..n} A298594(n,j).
%F A298593 T(n,k) = Sum_{j=k..n} A298597(n,j).
%F A298593 Sum_{k=1..n} T(n,k) = n*A000272(n+1).
%F A298593 T(n+1,1) = A089946(n), T(n,n) = A000169(n). - _Andrey Zabolotskiy_, Feb 21 2018
%e A298593 Triangle begins:
%e A298593 ====================================================================
%e A298593 n\k|       1       2       3       4       5       6       7       8
%e A298593 ---|----------------------------------------------------------------
%e A298593 1  |       1
%e A298593 2  |       4       2
%e A298593 3  |      24      15       9
%e A298593 4  |     200     136     100      64
%e A298593 5  |    2160    1535    1215     945     625
%e A298593 6  |   28812   21036   17286   14406   11526    7776
%e A298593 7  |  458752  341103  286671  247296  211456  172081  117649
%e A298593 8  | 8503056 6405904 5464712 4811528 4251528 3691528 3038344 2097152
%e A298593   ...
%t A298593 Table[n Sum[Binomial[n - 1, j - 1] j^(j - 2)*(n + 1 - j)^(n - 1 - j), {j, k, n}], {n, 9}, {k, n}] // Flatten (* _Michael De Vlieger_, Jan 22 2018 *)
%Y A298593 Cf. A000169, A000272, A089946, A298592, A298594, A298597.
%K A298593 easy,nonn,tabl
%O A298593 1,2
%A A298593 _Rui Duarte_, Jan 22 2018