This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298594 #31 Dec 27 2024 08:46:51 %S A298594 1,1,1,3,2,3,16,9,9,16,125,64,54,64,125,1296,625,480,480,625,1296, %T A298594 16807,7776,5625,5120,5625,7776,16807,262144,117649,81648,70000,70000, %U A298594 81648,117649,262144,4782969,2097152,1411788,1161216,1093750,1161216,1411788,2097152,4782969 %N A298594 Triangle read by rows: T(n,k) = number of parking functions a of length n such that a(1) = k and if we replace a(1) = k with k+1 we don't get a parking function. %H A298594 Steve Butler, Kimberly Hadaway, Victoria Lenius, Preston Martens, and Marshall Moats, <a href="https://arxiv.org/abs/2412.07873">Lucky cars and lucky spots in parking functions</a>, arXiv:2412.07873 [math.CO], 2024. See p. 6. %F A298594 T(n,k) = binomial(n-1, k-1)*k^(k-2)*(n+1-k)^(n-1-k). %F A298594 T(n,k) = A298592(n,k) - A298592(n,k+1). %F A298594 T(n,k) = (A298593(n,k) - A298593(n,k+1))/n. %F A298594 T(n,k) = A298597(n,k)/n. %F A298594 T(n,1) = A000272(n+2). %F A298594 T(n,n) = A000272(n+2). %F A298594 T(n,k) = T(n,n-k). %e A298594 Triangle begins: %e A298594 1; %e A298594 1, 1; %e A298594 3, 2, 3; %e A298594 16, 9, 9, 16; %e A298594 125, 64, 54, 64, 125; %e A298594 1296, 625, 480, 480, 625, 1296; %e A298594 16807, 7776, 5625, 5120, 5625, 7776, 16807; %e A298594 262144, 117649, 81648, 70000, 70000, 81648, 117649, 262144; %e A298594 ... %t A298594 Table[Binomial[n - 1, k - 1] k^(k - 2)*(n + 1 - k)^(n - 1 - k), {n, 9}, {k, n}] // Flatten (* _Michael De Vlieger_, Jan 22 2018 *) %Y A298594 Cf. A000272, A298592, A298593, A298597. %K A298594 easy,nonn,tabl %O A298594 1,4 %A A298594 _Rui Duarte_, Jan 22 2018