This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298596 #10 Jun 16 2018 12:16:55 %S A298596 1,0,-1,-1,0,0,0,0,1,0,0,0,1,0,0,-1,1,0,0,-1,1,-1,0,-1,2,-1,0,-2,2,-1, %T A298596 1,-2,3,-2,1,-3,4,-2,2,-4,5,-3,3,-5,6,-5,4,-6,9,-6,5,-9,10,-8,8,-11, %U A298596 13,-11,10,-14,17,-14,13,-19,21,-18,18,-23,26,-24,23,-29,34,-30,29,-38,41,-38,39 %N A298596 Expansion of Product_{k>=2} 1/(1 + x^k). %C A298596 The difference between the number of partitions of n into an even number of parts > 1 and the number of partitions of n into an odd number of parts > 1. %C A298596 Convolution inverse of A025147. %H A298596 <a href="/index/Par#part">Index entries for related partition-counting sequences</a> %F A298596 G.f.: Product_{k>=2} 1/(1 + x^k). %F A298596 a(n) = (-1)^n * (A000700(n) - A000700(n-1)), for n > 0. - _Vaclav Kotesovec_, Jun 06 2018 %F A298596 a(n) ~ (-1)^n * Pi * exp(Pi*sqrt(n/6)) / (2^(13/4) * 3^(3/4) * n^(5/4)). - _Vaclav Kotesovec_, Jun 06 2018 %F A298596 a(n) = A027188(n+2) - A027194(n+2). - _R. J. Mathar_, Jun 16 2018 %t A298596 nmax = 78; CoefficientList[Series[Product[1/(1 + x^k), {k, 2, nmax}], {x, 0, nmax}], x] %Y A298596 Cf. A000700, A002865, A025147, A027349, A078616, A081362. %K A298596 sign %O A298596 0,25 %A A298596 _Ilya Gutkovskiy_, Jan 22 2018