cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298597 Number T(n,k) of times the value k appears on the parking functions of length n and such that if we replace that value k with k+1 we don't get a parking function.

This page as a plain text file.
%I A298597 #22 Feb 20 2018 11:54:13
%S A298597 1,2,2,9,6,9,64,36,36,64,625,320,270,320,625,7776,3750,2880,2880,3750,
%T A298597 7776,117649,54432,39375,35840,39375,54432,117649,2097152,941192,
%U A298597 653184,560000,560000,653184,941192,2097152,43046721,18874368,12706092,10450944,9843750,10450944,12706092,18874368,43046721
%N A298597 Number T(n,k) of times the value k appears on the parking functions of length n and such that if we replace that value k with k+1 we don't get a parking function.
%F A298597 T(n,k) = n*binomial(n-1, k-1)*k^(k-2)*(n+1-k)^(n-1-k).
%F A298597 T(n,k) = n*A298594(n,k).
%F A298597 T(n.k) = A298593(n,k)-A298593(n,k+1).
%F A298597 T(n,k) = n*(A298592(n,k)-A298592(n,k+1)).
%F A298597 T(n,1) = n*A000272(n+2).
%F A298597 T(n,n) = n*A000272(n+2).
%F A298597 T(n,1) = A000169(n).
%F A298597 T(n,n) = A000169(n).
%F A298597 T(n,k) = T(n,n-k).
%e A298597 Triangle begins:
%e A298597         1;
%e A298597         2,      2;
%e A298597         9,      6,      9;
%e A298597        64,     36,     36,     64;
%e A298597       625,    320,    270,    320,    625;
%e A298597      7776,   3750,   2880,   2880,   3750,   7776;
%e A298597    117649,  54432,  39375,  35840,  39375,  54432, 117649;
%e A298597   2097152, 941192, 653184, 560000, 560000, 653184, 941192, 2097152;
%e A298597   ...
%t A298597 Table[n Binomial[n - 1, k - 1] k^(k - 2)*(n + 1 - k)^(n - 1 - k), {n, 9}, {k, n}] // Flatten (* _Michael De Vlieger_, Jan 22 2018 *)
%Y A298597 Cf. A000169, A000272, A298592, A298593, A298594.
%K A298597 easy,nonn,tabl
%O A298597 1,2
%A A298597 _Rui Duarte_, Jan 22 2018