cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298600 Expansion of Product_{k>=2} 1/(1 + x^(k^2)).

This page as a plain text file.
%I A298600 #5 Jan 22 2018 18:42:14
%S A298600 1,0,0,0,-1,0,0,0,1,-1,0,0,-1,1,0,0,0,-1,1,0,0,1,-1,0,0,-1,1,-1,0,1,
%T A298600 -1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,0,-2,2,-1,1,2,-2,1,-1,
%U A298600 -2,3,-2,1,2,-3,2,-1,-1,2,-3,1,1,-2,3,0,0,2,-3,1,-1,-2,3,-1,-2,2
%N A298600 Expansion of Product_{k>=2} 1/(1 + x^(k^2)).
%C A298600 The difference between the number of partitions of n into an even number of squares > 1 and the number of partitions of n into an odd number of squares > 1.
%H A298600 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%H A298600 <a href="/index/Par#part">Index entries for related partition-counting sequences</a>
%F A298600 G.f.: Product_{k>=2} 1/(1 + x^(k^2)).
%t A298600 nmax = 82; CoefficientList[Series[Product[1/(1 + x^k^2), {k, 2, Floor[Sqrt[nmax]] + 1}], {x, 0, nmax}], x]
%Y A298600 Cf. A001156, A033461, A078134, A276516, A280129, A292520, A298601.
%K A298600 sign
%O A298600 0,50
%A A298600 _Ilya Gutkovskiy_, Jan 22 2018