This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298602 #8 Jul 26 2025 16:36:17 %S A298602 1,-1,-1,0,1,0,0,0,1,0,-1,-1,1,0,0,0,1,-1,0,-1,1,0,0,-1,2,0,-1,-1,1, %T A298602 -1,1,-1,2,0,0,-2,2,-2,0,0,3,-2,1,-2,2,-1,0,-3,5,-1,0,-3,3,-3,3,-3,3, %U A298602 -1,2,-5,6,-4,1,-2,6,-5,3,-6,5,-2,4,-8,9,-5,3,-5,7,-8,7,-8,8,-4,5 %N A298602 Expansion of (1 - x)*Product_{k>=1} (1 - x^prime(k)). %C A298602 The difference between the number of partitions of n into an even number of distinct prime parts (including 1) and the number of partitions of n into an odd number of distinct prime parts (including 1). %C A298602 Convolution inverse of A034891. %H A298602 Alois P. Heinz, <a href="/A298602/b298602.txt">Table of n, a(n) for n = 0..10000</a> %H A298602 <a href="/index/Par#part">Index entries for related partition-counting sequences</a> %F A298602 G.f.: (1 - x)*Product_{k>=1} (1 - x^prime(k)). %t A298602 nmax = 82; CoefficientList[Series[(1 - x) Product[(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] %Y A298602 Cf. A000586, A000607, A034891, A036497, A046675 (partial sums). %K A298602 sign %O A298602 0,25 %A A298602 _Ilya Gutkovskiy_, Jan 22 2018