cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298608 Polynomials related to the Motzkin numbers for Coxeter type D, T(n, k) for n >= 0 and 0 <= k <= n.

This page as a plain text file.
%I A298608 #21 May 27 2025 06:52:39
%S A298608 1,0,1,2,1,1,2,6,2,1,6,9,12,3,1,8,30,24,20,4,1,20,50,90,50,30,5,1,30,
%T A298608 140,180,210,90,42,6,1,70,245,560,490,420,147,56,7,1,112,630,1120,
%U A298608 1680,1120,756,224,72,8,1
%N A298608 Polynomials related to the Motzkin numbers for Coxeter type D, T(n, k) for n >= 0 and 0 <= k <= n.
%C A298608 The polynomials evaluated at x = 1 give the analog of the Motzkin numbers for Coxeter type D (see A298300 (with a shift in the indexing)).
%F A298608 T(n,k) = A109187(n,k) + A298609(n,k).
%F A298608 The polynomials are defined by p(0, x) = 1 and for n >= 1 by p(n, x) = G(n,-n,-x/2) + G(n-1,-n,-x/2)*(n-1)/n where G(n, a, x) denotes the n-th Gegenbauer polynomial.
%F A298608 p(n, x) = binomial(2*n,n)*(hypergeom([-n,-n], [-n+1/2], 1/2-x/4) + ((n-1)/(n+1))*hypergeom([-n+1,-n-1], [-n+1/2], 1/2-x/4)) for n >= 1.
%e A298608 The first few polynomials are:
%e A298608   p0(x) =  1;
%e A298608   p1(x) =  0 +     x;
%e A298608   p2(x) =  2 +     x +     x^2;
%e A298608   p3(x) =  2 +   6*x +   2*x^2 +     x^3;
%e A298608   p4(x) =  6 +   9*x +  12*x^2 +   3*x^3 +    x^4;
%e A298608   p5(x) =  8 +  30*x +  24*x^2 +  20*x^3 +   4*x^4 +     x^5;
%e A298608   p6(x) = 20 +  50*x +  90*x^2 +  50*x^3 +  30*x^4 +   5*x^5 +    x^6;
%e A298608   p7(x) = 30 + 140*x + 180*x^2 + 210*x^3 +  90*x^4 +  42*x^5 +  6*x^6 +   x^7;
%e A298608 The triangle starts:
%e A298608   [0][  1]
%e A298608   [1][  0,   1]
%e A298608   [2][  2,   1,    1]
%e A298608   [3][  2,   6,    2,    1]
%e A298608   [4][  6,   9,   12,    3,    1]
%e A298608   [5][  8,  30,   24,   20,    4,   1]
%e A298608   [6][ 20,  50,   90,   50,   30,   5,   1]
%e A298608   [7][ 30, 140,  180,  210,   90,  42,   6,  1]
%e A298608   [8][ 70, 245,  560,  490,  420, 147,  56,  7, 1]
%e A298608   [9][112, 630, 1120, 1680, 1120, 756, 224, 72, 8, 1]
%p A298608 A298608Poly := n -> `if`(n=0, 1, binomial(2*n, n)*(hypergeom([-n, -n], [-n+1/2], 1/2-x/4) + ((n-1)/(n+1))*hypergeom([-n+1, -n-1], [-n+1/2], 1/2-x/4))):
%p A298608 A298608Row := n -> op(PolynomialTools:-CoefficientList(simplify(A298608Poly(n)), x)): seq(A298608Row(n), n=0..9);
%t A298608 p[0] := 1;
%t A298608 p[n_] := GegenbauerC[n, -n , -x/2] + GegenbauerC[n - 1, -n , -x/2] (n - 1) / n;
%t A298608 Table[CoefficientList[p[n], x], {n, 0, 9}] // Flatten
%Y A298608 Row sums are A298300(n+1) for n >= 1.
%Y A298608 Cf. A109187, A298609.
%K A298608 nonn,tabl
%O A298608 0,4
%A A298608 _Peter Luschny_, Jan 23 2018