This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298609 #14 Jan 25 2018 03:36:12 %S A298609 0,0,0,0,1,0,2,0,2,0,0,9,0,3,0,8,0,24,0,4,0,0,50,0,50,0,5,0,30,0,180, %T A298609 0,90,0,6,0,0,245,0,490,0,147,0,7,0,112,0,1120,0,1120,0,224,0,8,0,0, %U A298609 1134,0,3780,0,2268,0,324,0,9,0,420,0,6300,0,10500,0,4200,0,450,0,10,0 %N A298609 Polynomials related to the Motzkin sums for Coxeter type D, T(n, k) for n >= 0 and 0 <= k <= n. %C A298609 The polynomials evaluated at x = 1 give the analog of the Motzkin sums for Coxeter type D (see A290380 (with a shift in the indexing)). %F A298609 A298608(n,k) = A109187(n,k) + T(n,k). %F A298609 The polynomials are defined by p(0, x) = p(1, x) = 0 and for n >= 2 by p(n, x) = G(n - 1, -n, -x/2)*(n - 1)/n where G(n, a, x) denotes the n-th Gegenbauer polynomial. %F A298609 p(n, x) = Catalan(n)*(n-1)*hypergeom([1-n, -n-1], [-n+1/2], 1/2-x/4) for n >= 2. %e A298609 The first few polynomials are: %e A298609 p0(x) = 0; %e A298609 p1(x) = 0; %e A298609 p2(x) = x; %e A298609 p3(x) = 2 + 2*x^2; %e A298609 p4(x) = 9*x + 3*x^3; %e A298609 p5(x) = 8 + 24*x^2 + 4*x^4; %e A298609 p6(x) = 50*x + 50*x^3 + 5*x^5; %e A298609 p7(x) = 30 + 180*x^2 + 90*x^4 + 6*x^6; %e A298609 p8(x) = 245*x + 490*x^3 + 147*x^5 + 7*x^7; %e A298609 p9(x) = 112 + 1120*x^2 + 1120*x^4 + 224*x^6 + 8*x^8; %e A298609 The triangle of coefficients extended by the main diagonal with zeros starts: %e A298609 [0][ 0] %e A298609 [1][ 0, 0] %e A298609 [2][ 0, 1, 0] %e A298609 [3][ 2, 0, 2, 0] %e A298609 [4][ 0, 9, 0, 3, 0] %e A298609 [5][ 8, 0, 24, 0, 4, 0] %e A298609 [6][ 0, 50, 0, 50, 0, 5, 0] %e A298609 [7][ 30, 0, 180, 0, 90, 0, 6, 0] %e A298609 [8][ 0, 245, 0, 490, 0, 147, 0, 7, 0] %e A298609 [9][112, 0, 1120, 0, 1120, 0, 224, 0, 8, 0] %p A298609 A298609Poly := n -> `if`(n<=1, 0, binomial(2*n, n)*((n-1)/(n+1))*hypergeom([1-n, -n-1], [-n+1/2], 1/2-x/4)): %p A298609 A298609Row := n -> if n=0 then 0 elif n=1 then 0,0 else op(PolynomialTools:-CoefficientList(simplify(A298609Poly(n)), x)),0 fi: %p A298609 seq(A298609Row(n), n=0..11); %t A298609 P298609[n_] := If[n <= 1, 0, GegenbauerC[n - 1, -n, -x/2] (n - 1)/n]; %t A298609 Flatten[ Join[ {{0}, {0, 0}}, %t A298609 Table[ Join[ CoefficientList[ P298609[n], x], {0}], {n, 2, 10}]]] %Y A298609 Cf. A109187, A290380, A298608. %K A298609 nonn,tabl %O A298609 0,7 %A A298609 _Peter Luschny_, Jan 23 2018