cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298609 Polynomials related to the Motzkin sums for Coxeter type D, T(n, k) for n >= 0 and 0 <= k <= n.

This page as a plain text file.
%I A298609 #14 Jan 25 2018 03:36:12
%S A298609 0,0,0,0,1,0,2,0,2,0,0,9,0,3,0,8,0,24,0,4,0,0,50,0,50,0,5,0,30,0,180,
%T A298609 0,90,0,6,0,0,245,0,490,0,147,0,7,0,112,0,1120,0,1120,0,224,0,8,0,0,
%U A298609 1134,0,3780,0,2268,0,324,0,9,0,420,0,6300,0,10500,0,4200,0,450,0,10,0
%N A298609 Polynomials related to the Motzkin sums for Coxeter type D, T(n, k) for n >= 0 and 0 <= k <= n.
%C A298609 The polynomials evaluated at x = 1 give the analog of the Motzkin sums for Coxeter type D (see A290380 (with a shift in the indexing)).
%F A298609 A298608(n,k) = A109187(n,k) + T(n,k).
%F A298609 The polynomials are defined by p(0, x) = p(1, x) = 0 and for n >= 2 by  p(n, x) = G(n - 1, -n, -x/2)*(n - 1)/n where G(n, a, x) denotes the n-th Gegenbauer polynomial.
%F A298609 p(n, x) = Catalan(n)*(n-1)*hypergeom([1-n, -n-1], [-n+1/2], 1/2-x/4) for n >= 2.
%e A298609 The first few polynomials are:
%e A298609 p0(x) = 0;
%e A298609 p1(x) = 0;
%e A298609 p2(x) = x;
%e A298609 p3(x) = 2 + 2*x^2;
%e A298609 p4(x) = 9*x + 3*x^3;
%e A298609 p5(x) = 8 + 24*x^2 + 4*x^4;
%e A298609 p6(x) = 50*x + 50*x^3 + 5*x^5;
%e A298609 p7(x) = 30 + 180*x^2 + 90*x^4 + 6*x^6;
%e A298609 p8(x) = 245*x + 490*x^3 + 147*x^5 + 7*x^7;
%e A298609 p9(x) = 112 + 1120*x^2 + 1120*x^4 + 224*x^6 + 8*x^8;
%e A298609 The triangle of coefficients extended by the main diagonal with zeros starts:
%e A298609 [0][  0]
%e A298609 [1][  0,    0]
%e A298609 [2][  0,    1,    0]
%e A298609 [3][  2,    0,    2,    0]
%e A298609 [4][  0,    9,    0,    3,    0]
%e A298609 [5][  8,    0,   24,    0,    4,    0]
%e A298609 [6][  0,   50,    0,   50,    0,    5,   0]
%e A298609 [7][ 30,    0,  180,    0,   90,    0,   6,  0]
%e A298609 [8][  0,  245,    0,  490,    0,  147,   0,  7,  0]
%e A298609 [9][112,    0, 1120,    0, 1120,    0, 224,  0,  8,  0]
%p A298609 A298609Poly := n -> `if`(n<=1, 0, binomial(2*n, n)*((n-1)/(n+1))*hypergeom([1-n, -n-1], [-n+1/2], 1/2-x/4)):
%p A298609 A298609Row := n -> if n=0 then 0 elif n=1 then 0,0 else op(PolynomialTools:-CoefficientList(simplify(A298609Poly(n)), x)),0 fi:
%p A298609 seq(A298609Row(n), n=0..11);
%t A298609 P298609[n_] := If[n <= 1, 0, GegenbauerC[n - 1, -n, -x/2] (n - 1)/n];
%t A298609 Flatten[ Join[ {{0}, {0, 0}},
%t A298609   Table[ Join[ CoefficientList[ P298609[n], x], {0}], {n, 2, 10}]]]
%Y A298609 Cf. A109187, A290380, A298608.
%K A298609 nonn,tabl
%O A298609 0,7
%A A298609 _Peter Luschny_, Jan 23 2018