This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298610 #13 Jan 27 2018 06:46:03 %S A298610 1,0,1,2,0,3,0,12,0,10,10,0,60,0,35,0,105,0,280,0,126,56,0,756,0,1260, %T A298610 0,462,0,840,0,4620,0,5544,0,1716,330,0,7920,0,25740,0,24024,0,6435,0, %U A298610 6435,0,60060,0,135135,0,102960,0,24310 %N A298610 Triangle read by rows, the unsigned coefficients of G(n, n, x/2) where G(n,a,x) denotes the n-th Gegenbauer polynomial, T(n, k) for 0 <= k <= n. %F A298610 G(n, x) = binomial(3*n-1, n)*hypergeom([-n, 3*n], [n+1/2], 1/2 - x/4). %e A298610 [0] 1 %e A298610 [1] 0, 1 %e A298610 [2] 2, 0, 3 %e A298610 [3] 0, 12, 0, 10 %e A298610 [4] 10, 0, 60, 0, 35 %e A298610 [5] 0, 105, 0, 280, 0, 126 %e A298610 [6] 56, 0, 756, 0, 1260, 0, 462 %e A298610 [7] 0, 840, 0, 4620, 0, 5544, 0, 1716 %e A298610 [8] 330, 0, 7920, 0, 25740, 0, 24024, 0, 6435 %e A298610 [9] 0, 6435, 0, 60060, 0, 135135, 0, 102960, 0, 24310 %p A298610 with(orthopoly): %p A298610 seq(seq((-1)^iquo(n-k, 2)*coeff(G(n,n,x/2),x,k), k=0..n), n=0..9); %t A298610 p[n_] := Binomial[3 n - 1, n] Hypergeometric2F1[-n, 3 n, n + 1/2, 1/2 - x/4]; %t A298610 Flatten[Table[(-1)^Floor[(n-k)/2] Coefficient[p[n], x, k], {n,0,9}, {k,0,n}]] %Y A298610 T(2n, 0) = A165817(n). T(n,n) = A088218(n). Row sums are A213684. %Y A298610 Cf. A109187. %K A298610 nonn,tabl %O A298610 0,4 %A A298610 _Peter Luschny_, Jan 25 2018