This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298611 #15 Jan 30 2020 21:29:18 %S A298611 1,3,13,67,349,1875,10285,57123,320317,1809587,10283149,58714627, %T A298611 336579101,1935878419,11166265837,64566715363,374148669949, %U A298611 2172215118963,12632572359757,73575490895043,429102329027293,2505638311638739,14647279574704045,85710562407867555 %N A298611 Expansion of (1 - 6*x + x^2 - 8*x^3 + 16*x^4)^(-1/2). %C A298611 See A299499 for a family of related polynomials. %F A298611 a(n) = Sum_{k=0..n} 2^(n-k)*binomial(n,k)*hypergeom([-k, k-n, k-n], [1, -n], 2). %F A298611 D-finite with recurrence: (16*n-32)*a(n-4) + (-8*n+12)*a(n-3) + (n-1)*a(n-2) + (-6*n+3)*a(n-1) + n*a(n) = 0. %p A298611 a := n -> add(2^(n-k)*binomial(n,k)*hypergeom([-k,k-n,k-n],[1,-n],2), k=0..n): seq(simplify(a(n)), n=0..23); %t A298611 CoefficientList[Series[(1 - 6 x + x^2 - 8 x^3 + 16 x^4)^(-1/2), {x, 0, 23}], x] %Y A298611 Cf. A299499, A299502. %K A298611 nonn %O A298611 0,2 %A A298611 _Peter Luschny_, Feb 15 2018