cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298646 a(n) is the sum of the degrees of asymmetry of all Dyck paths of semilength n.

This page as a plain text file.
%I A298646 #32 Dec 21 2020 07:16:56
%S A298646 0,0,4,18,88,360,1524,6090,24784,98244,393820,1556324,6196656,
%T A298646 24461424,97079220,383132250,1518103840,5992343940,23726184372,
%U A298646 93686670220,370840981680,1464969055368,5798679839524,22917832613988,90725318348448,358737952183800
%N A298646 a(n) is the sum of the degrees of asymmetry of all Dyck paths of semilength n.
%C A298646 The degree of asymmetry of a Dyck path is defined in the following manner: we label the steps of a Dyck path of length 2n, from left to right, by 1,2,..., n-1, n, n, n-1, ..., 2,1. The degree of asymmetry is defined to be the number of pairs of identically labeled steps that are not at the same level. Example: the Dyck path uduudd has degree of asymmetry 2. Indeed, the labels are 123321 and the steps labeled 2 are at different levels and those labeled 3 are also at different levels.
%C A298646 All terms are even.
%H A298646 Alois P. Heinz, <a href="/A298646/b298646.txt">Table of n, a(n) for n = 1..1664</a>
%F A298646 a(n) = Sum_{k=0..n-1} k*A298645(n,k).
%F A298646 a(n) = (2*(n-1)*(34328*n^3 + 1024539*n^2 - 2260739*n - 3203910)*n*a(n-1) + 24*(n-1)*(63276*n^4 - 396683*n^3 + 460919*n^2 + 544393*n - 1067970)* a(n-2) - 32*(34328*n^5 + 784243*n^4 - 7831140*n^3 + 24334466*n^2 - 31463717*n + 15037140)*a(n-3) - 128*(n-3)*(n-4)*(2*n-7)*(38875*n^2 - 225739*n + 246552)*a(n-4))/((n+2)*(n+1)*n*(56039*n^2 - 121145*n - 130144)) for n>3, a(n) = 0 for n<3, a(3) = 4. - _Alois P. Heinz_, Feb 28 2018
%F A298646 a(n) ~ 4^n / sqrt(Pi*n) * (1 - 2/sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 06 2018
%e A298646 a(3) = 4. Indeed, showing the step levels, the 5 = A000108(3) Dyck paths of semilength 3 are 111111, 122221, 123321, 111221, 122111. The first 3 are symmetric (degree of asymmetry 0) and each of the last 2 has degree of asymmetry 2.
%p A298646 a:= proc(n) option remember; `if`(n<4, [0$3, 4][n+1], (
%p A298646       2*(n-1)*(34328*n^3+1024539*n^2-2260739*n-3203910)*n*a(n-1)
%p A298646       +24*(n-1)*(63276*n^4-396683*n^3+460919*n^2+544393*n-1067970)*
%p A298646       a(n-2)-32*(34328*n^5+784243*n^4-7831140*n^3+24334466*n^2
%p A298646       -31463717*n+15037140)*a(n-3)-128*(n-3)*(n-4)*(2*n-7)*(38875*n^2
%p A298646       -225739*n+246552)*a(n-4))/((n+2)*(n+1)*n*(56039*n^2-121145*n-130144)))
%p A298646     end:
%p A298646 seq(a(n), n=1..30);  # _Alois P. Heinz_, Feb 21 2018
%t A298646 b[x_, y_, v_] := b[x, y, v] = Expand[If[Min[y, v, x - Max[y, v]] < 0, 0, If[x == 0, 1, Function[l, Sum[Sum[If[y == v + (j - i)/2, 1, z] b[x - 1, y + i, v + j], {i, l}], {j, l}]][{-1, 1}]]]];
%t A298646 g[n_] := g[n] = Sum[b[n, j, j], {j, 0, n}];
%t A298646 T[n_, k_] := Coefficient[g[n], z, k];
%t A298646 a[n_] := Sum[k T[n, k], {k, 0, n - 1}];
%t A298646 Array[a, 30] (* _Jean-François Alcover_, Dec 21 2020, after _Alois P. Heinz_ in A298645 *)
%Y A298646 Cf. A000108, A298645.
%K A298646 nonn
%O A298646 1,3
%A A298646 _Emeric Deutsch_, Feb 21 2018