cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298656 Number of nX4 0..1 arrays with every element equal to 1, 2, 4, 6 or 7 king-move adjacent elements, with upper left element zero.

This page as a plain text file.
%I A298656 #4 Jan 24 2018 10:09:05
%S A298656 2,13,19,40,85,173,322,635,1325,2806,5877,12293,25318,52348,110032,
%T A298656 230666,481721,1008645,2105418,4397869,9221888,19306816,40379476,
%U A298656 84574182,176999321,370432095,776067635,1625005774,3401774504,7125184125
%N A298656 Number of nX4 0..1 arrays with every element equal to 1, 2, 4, 6 or 7 king-move adjacent elements, with upper left element zero.
%C A298656 Column 4 of A298660.
%H A298656 R. H. Hardin, <a href="/A298656/b298656.txt">Table of n, a(n) for n = 1..210</a>
%F A298656 Empirical: a(n) = 3*a(n-1) +a(n-3) -14*a(n-4) -a(n-5) +33*a(n-6) -58*a(n-7) +8*a(n-8) +31*a(n-9) +257*a(n-10) -83*a(n-11) -415*a(n-12) +258*a(n-13) +257*a(n-14) -701*a(n-15) -1280*a(n-16) +817*a(n-17) +2138*a(n-18) -1277*a(n-19) -1528*a(n-20) +3841*a(n-21) +4395*a(n-22) -4674*a(n-23) -3840*a(n-24) +6126*a(n-25) +1522*a(n-26) -10670*a(n-27) -7803*a(n-28) +11150*a(n-29) +1242*a(n-30) -18501*a(n-31) +5389*a(n-32) +19940*a(n-33) -6561*a(n-34) -14251*a(n-35) +20541*a(n-36) +18531*a(n-37) -24833*a(n-38) -10425*a(n-39) +29434*a(n-40) +13173*a(n-41) -23604*a(n-42) -9671*a(n-43) +14824*a(n-44) -2310*a(n-45) -14701*a(n-46) -6124*a(n-47) +4664*a(n-48) +2279*a(n-49) -4344*a(n-50) +3221*a(n-51) +5148*a(n-52) -1564*a(n-53) -1655*a(n-54) +410*a(n-55) -29*a(n-56) +385*a(n-57) +1679*a(n-58) +770*a(n-59) -1293*a(n-60) -895*a(n-61) +499*a(n-62) +423*a(n-63) -72*a(n-64) -174*a(n-65) -69*a(n-66) +20*a(n-67) +16*a(n-68) +10*a(n-69) +5*a(n-70) -2*a(n-71) -a(n-72) for n>73
%e A298656 Some solutions for n=5
%e A298656 ..0..1..1..0. .0..1..1..0. .0..0..1..1. .0..1..1..1. .0..1..0..1
%e A298656 ..0..0..0..1. .0..0..0..0. .1..0..1..0. .0..0..0..0. .0..1..1..0
%e A298656 ..0..0..0..1. .0..0..0..0. .1..1..1..0. .0..0..0..1. .0..1..1..1
%e A298656 ..0..1..0..1. .1..0..1..0. .1..1..1..0. .1..0..0..1. .1..1..1..1
%e A298656 ..1..1..0..0. .1..0..1..1. .1..0..0..1. .0..1..0..1. .0..0..0..1
%Y A298656 Cf. A298660.
%K A298656 nonn
%O A298656 1,1
%A A298656 _R. H. Hardin_, Jan 24 2018