This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298669 #32 May 11 2018 10:34:00 %S A298669 0,0,1,8,1024,5,1071,6443,52743,1184,11131,39,7,856079,3363658,9264, %T A298669 3150,1313151,13,33629,555296667,534689,8388607,5,512212693,193652, %U A298669 286330,282030,7224372579,1120049,149041 %N A298669 Let b(n) = 2^n with n >= 2, and let c = k*b(n) + 1 for k >= 1; then a(n) is the smallest k such that c is prime and such that A007814(r(n)) = A007814(k) + n where r(n) is the remainder of 2^(b(n)/4) mod c, or 0 if no such k exists. %C A298669 a(n-2) <= A007117(n). %C A298669 a(33) <= 5463561471303. %H A298669 Wilfrid Keller, <a href="http://www.prothsearch.com/fermat.html">Fermat factoring status</a> %F A298669 For n >= 1, a(A204620(n)) = 3; a(A226366(n)) = 5; a(A280003(n)) = 7. %o A298669 (PARI) print1(0, ", "0", "); for(n=4, 32, b=2^n; k=1; t=0; while(t<1, c=k*b+1; if(isprime(c), r=Mod(2, c)^(b/4); if(lift(r/b)<=k, if(valuation(lift(r), 2)==valuation(k, 2)+n, t=1; print1(k, ", ")))); k++)); %Y A298669 Cf. A007117, A007814, A298670. %K A298669 nonn %O A298669 2,4 %A A298669 _Arkadiusz Wesolowski_, Jan 24 2018