A298674 Square matrix read by antidiagonals up. Matrix of Dirichlet series associated with Sum_{n<=X} MangoldtLambda(n) * MangoldtLambda(n+2).
1, 1, 2, 1, -2, -1, 1, 2, 2, 3, 1, -2, -1, -1, 2, 1, 2, -1, 3, 2, -2, 1, -2, 2, -1, -3, -4, 2, 1, 2, -1, 3, 2, -2, 2, 4, 1, -2, -1, -1, -3, 2, 2, 0, -3, 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 1, -2, -1, -1, 2, 2, -5, 0, -3, -4, 2, 1, 2, -1, 3, -3, -2, 2, 4, -3, -6, 2, -3
Offset: 1
Examples
The square matrix starts: { {1, 2, -1, 3, 2, -2, 2, 4, -3, 4, 2, -3}, {1, -2, 2, -1, 2, -4, 2, 0, 3, -4, 2, -2}, {1, 2, -1, 3, -3, -2, 2, 4, -3, -6, 2, -3}, {1, -2, -1, -1, 2, 2, 2, 0, -3, -4, 2, 1}, {1, 2, 2, 3, -3, 4, -5, 4, 3, -6, 2, 6}, {1, -2, -1, -1, 2, 2, 2, 0, -3, -4, 2, 1}, {1, 2, -1, 3, 2, -2, -5, 4, -3, 4, 2, -3}, {1, -2, 2, -1, -3, -4, 2, 0, 3, 6, 2, -2}, {1, 2, -1, 3, 2, -2, 2, 4, -3, 4, -9, -3}, {1, -2, -1, -1, -3, 2, 2, 0, -3, 6, 2, 1} }
Links
- Terence Tao, Correlations of the von Mangoldt and higher divisor functions I. Long shift ranges. See second formula.
Programs
-
Mathematica
h = 2; nn = 14; A = Table[If[Mod[n, k] == 0, 1, 0], {n, nn}, {k, nn}]; B = Table[If[Mod[k, n] == 0, MoebiusMu[n]*n, 0], {n, nn}, {k, nn}]; T = (A.B); TableForm[TwinMangoldt = Table[a = T[[All, kk]]; F1 = Table[If[Mod[n, k] == 0, a[[n/k]], 0], {n, nn}, {k, nn}]; b = T[[All, kk + h]]; F2 = Table[If[Mod[n, k] == 0, b[[n/k]], 0], {n, nn}, {k, nn}]; (F1.F2)[[All, 1]], {kk, nn - h}]]; Flatten[Table[TwinMangoldt[[n - k + 1, k]], {n, nn - h}, {k, n}]]
Formula
Let h = 2.
Let A(n,k) = 1 if n mod k = 0, otherwise 0.
Let B(n,k) = A008683(n)*n if k mod n = 0, otherwise 0.
Let T = A.B (where "." is matrix multiplication).
Take the Dirichlet convolution of a row in T(n,k) and a row in T(n+h,k) for n=1,2,3,4,5,... infinity, and form this matrix from the first columns of the convolutions. See Mathematica program for more precise description.
Comments