cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298675 Rectangular array A: first differences of row entries of array A294099, read by antidiagonals.

This page as a plain text file.
%I A298675 #39 Oct 23 2024 01:23:19
%S A298675 1,2,-1,3,2,-2,4,7,2,-1,5,14,18,2,1,6,23,52,47,2,2,7,34,110,194,123,2,
%T A298675 1,8,47,198,527,724,322,2,-1,9,62,322,1154,2525,2702,843,2,-2,10,79,
%U A298675 488,2207,6726,12098,10084,2207,2,-1,11,98,702,3842,15127,39202,57965,37634,5778,2,1
%N A298675 Rectangular array A: first differences of row entries of array A294099, read by antidiagonals.
%C A298675 From a problem in A269254. For detailed theory, see [Hone].
%C A298675 From _Charles L. Hohn_, Sep 28 2024: (Start)
%C A298675 For rows n >= 3, values x >= 3 where (x^2-4)/(n^2-4) is a square.
%C A298675 For rows n >= 3, Lim_{k->oo}(T(n, k+1)/T(n, k)) = (sqrt(n^2-4)+n)/2. (End)
%H A298675 Andrew N. W. Hone, et al., <a href="https://arxiv.org/abs/1802.01793">On a family of sequences related to Chebyshev polynomials</a>, arXiv:1802.01793 [math.NT], 2018.
%F A298675 A(n,k) = T_k(n), n >= 1, k >= 1, where T_j(x) = x*T_{j-1}(x) - T_{j-2}(x), j >= 2, T_0(x) = 2, T_1(x) = x,  (dilated Chebyshev polynomials of the first kind).
%e A298675 Array begins:
%e A298675    1 -1  -2   -1     1      2       1       -1        -2         -1
%e A298675    2  2   2    2     2      2       2        2         2          2
%e A298675    3  7  18   47   123    322     843     2207      5778      15127
%e A298675    4 14  52  194   724   2702   10084    37634    140452     524174
%e A298675    5 23 110  527  2525  12098   57965   277727   1330670    6375623
%e A298675    6 34 198 1154  6726  39202  228486  1331714   7761798   45239074
%e A298675    7 47 322 2207 15127 103682  710647  4870847  33385282  228826127
%e A298675    8 62 488 3842 30248 238142 1874888 14760962 116212808  914941502
%e A298675    9 79 702 6239 55449 492802 4379769 38925119 345946302 3074591599
%e A298675   10 98 970 9602 95050 940898 9313930 92198402 912670090 9034502498
%t A298675 t[n_, 0] := 2; t[n_, 1] := n; t[n_, k_] := n*t[n, k - 1] - t[n, k - 2]; Table[t[n, k], {n, 10}, {k, 10}] // Grid
%Y A298675 Main diagonal gives A343259.
%Y A298675 Cf. A285992, A299107, A299109, A088165, A117522, A299100, A299101, A113501, A269253, A269254, A294099, A298675, A298677, A298878, A299045, A299071.
%K A298675 sign,tabl
%O A298675 1,2
%A A298675 _L. Edson Jeffery_, _Bob Selcoe_ and _Andrew Hone_, Jan 24 2018