cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298678 Start with the hexagonal tile of the Shield tiling and recursively apply the substitution rule. a(n) is the number of hexagonal tiles after n iterations.

This page as a plain text file.
%I A298678 #22 Jan 29 2018 05:49:01
%S A298678 1,0,7,12,73,216,919,3204,12409,45408,171271,635580,2379241,8865000,
%T A298678 33113527,123523572,461111833,1720661616,6422058919,23966525484,
%U A298678 89446140169,333813840888,1245817611991,4649439829860,17351975261881,64758394108800,241681735391047
%N A298678 Start with the hexagonal tile of the Shield tiling and recursively apply the substitution rule. a(n) is the number of hexagonal tiles after n iterations.
%C A298678 The following substitution rules apply to the tiles:
%C A298678 triangle with 6 markings -> 1 hexagon
%C A298678 triangle with 4 markings -> 1 square, 2 triangles with 4 markings
%C A298678 square                   -> 1 square, 4 triangles with 6 markings
%C A298678 hexagon                  -> 7 triangles with 6 markings, 3 triangles with 4 markings, 3 squares
%C A298678 For n > 0, a(n) is also the number of triangles with 6 markings after n iterations when starting with the hexagon.
%C A298678 a(n) is also the number of triangles with 6 markings after n iterations when starting with the triangle with 6 markings.
%C A298678 a(n) is also the number of hexagons after n iterations when starting with the triangle with 6 markings.
%H A298678 Colin Barker, <a href="/A298678/b298678.txt">Table of n, a(n) for n = 0..1000</a>
%H A298678 F. Gähler, <a href="https://doi.org/10.1016/0022-3093(93)90335-U">Matching rules for quasicrystals: the composition-decomposition method</a>, Journal of Non-Crystalline Solids, 153-154 (1993), 160-164.
%H A298678 Tilings Encyclopedia, <a href="https://tilings.math.uni-bielefeld.de/substitution/shield">Shield</a>
%H A298678 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,7,-2).
%F A298678 G.f.: (1-2*x)/((1+2*x)*(1-4*x+x^2)). - _Joerg Arndt_, Jan 25 2018
%F A298678 13*a(n) = A077235(n) + 8*(-2)^n. - _Bruno Berselli_, Jan 25 2018
%F A298678 From _Colin Barker_, Jan 25 2018: (Start)
%F A298678 a(n) = (1/26)*((-1)^n*2^(4+n) + (5-2*sqrt(3))*(2-sqrt(3))^n + (2+sqrt(3))^n*(5+2*sqrt(3))).
%F A298678 a(n) = 2*a(n-1) + 7*a(n-2) - 2*a(n-3) for n>2.
%F A298678 (End)
%o A298678 (PARI) /* The function substitute() takes as argument a 4-element vector, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons that are to be substituted. The function returns a vector w, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons resulting from the substitution. */
%o A298678 substitute(v) = my(w=vector(4)); for(k=1, #v, while(v[1] > 0, w[4]++; v[1]--); while(v[2] > 0, w[3]++; w[2]=w[2]+2; v[2]--); while(v[3] > 0, w[3]++; w[1]=w[1]+4; v[3]--); while(v[4] > 0, w[1]=w[1]+7; w[2]=w[2]+3; w[3]=w[3]+3; v[4]--)); w
%o A298678 terms(n) = my(v=[0, 0, 0, 1], i=0); while(1, print1(v[4], ", "); i++; if(i==n, break, v=substitute(v)))
%o A298678 (PARI) Vec((1-2*x)/((1+2*x)*(1-4*x+x^2)) + O(x^40)) \\ _Colin Barker_, Jan 25 2018
%Y A298678 Cf. A298679, A298680, A298681, A298682, A298683.
%K A298678 nonn,easy
%O A298678 0,3
%A A298678 _Felix Fröhlich_, Jan 24 2018
%E A298678 More terms from _Colin Barker_, Jan 25 2018