cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298679 Start with the hexagonal tile of the Shield tiling and recursively apply the substitution rule. a(n) is the number of square tiles after n iterations.

This page as a plain text file.
%I A298679 #17 Mar 02 2022 13:02:46
%S A298679 0,3,6,33,102,423,1494,5745,21102,79431,295086,1103985,4114710,
%T A298679 15367143,57329286,213999153,798569022,2980473543,11122931934,
%U A298679 41512040625,154923657702,578185735911,2157812994486,8053078824945,30054477139470,112164880064583
%N A298679 Start with the hexagonal tile of the Shield tiling and recursively apply the substitution rule. a(n) is the number of square tiles after n iterations.
%C A298679 The following substitution rules apply to the tiles:
%C A298679 triangle with 6 markings -> 1 hexagon
%C A298679 triangle with 4 markings -> 1 square, 2 triangles with 4 markings
%C A298679 square                   -> 1 square, 4 triangles with 6 markings
%C A298679 hexagon                  -> 7 triangles with 6 markings, 3 triangles with 4 markings, 3 squares
%C A298679 a(n) is also the number of triangles with 4 markings after n+1 iterations when starting with the hexagonal tile.
%C A298679 a(n) is also the number of square tiles after n+1 iterations when starting with the hexagonal tile.
%H A298679 Colin Barker, <a href="/A298679/b298679.txt">Table of n, a(n) for n = 0..1000</a>
%H A298679 F. Gähler, <a href="https://doi.org/10.1016/0022-3093(93)90335-U">Matching rules for quasicrystals: the composition-decomposition method</a>, Journal of Non-Crystalline Solids, 153-154 (1993), 160-164.
%H A298679 Tilings Encyclopedia, <a href="https://tilings.math.uni-bielefeld.de/substitution/shield">Shield</a>
%H A298679 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,7,-2).
%F A298679 From _Colin Barker_, Jan 25 2018: (Start)
%F A298679 G.f.: 3*x / ((1 + 2*x)*(1 - 4*x + x^2)).
%F A298679 a(n) = (1/26)*(-3*(-1)^n*2^(2+n) + (6-5*sqrt(3))*(2-sqrt(3))^n + (2+sqrt(3))^n*(6+5*sqrt(3))).
%F A298679 a(n) = 2*a(n-1) + 7*a(n-2) - 2*a(n-3) for n>2.
%F A298679 (End)
%t A298679 CoefficientList[Series[ 3x/((1+2x)(1-4x+x^2)) ,{x,0,40}],x] (* or *) LinearRecurrence[{2,7,-2},{0,3,6},40] (* _Harvey P. Dale_, Mar 02 2022 *)
%o A298679 (PARI) /* The function substitute() takes as argument a 4-element vector, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons that are to be substituted. The function returns a vector w, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons resulting from the substitution. */
%o A298679 substitute(v) = my(w=vector(4)); for(k=1, #v, while(v[1] > 0, w[4]++; v[1]--); while(v[2] > 0, w[3]++; w[2]=w[2]+2; v[2]--); while(v[3] > 0, w[3]++; w[1]=w[1]+4; v[3]--); while(v[4] > 0, w[1]=w[1]+7; w[2]=w[2]+3; w[3]=w[3]+3; v[4]--)); w
%o A298679 terms(n) = my(v=[0, 0, 0, 1], i=0); while(1, print1(v[3], ", "); i++; if(i==n, break, v=substitute(v)))
%o A298679 (PARI) concat(0, Vec(3*x / ((1 + 2*x)*(1 - 4*x + x^2)) + O(x^40))) \\ _Colin Barker_, Jan 25 2018
%Y A298679 Cf. A298678, A298680, A298681, A298682, A298683.
%K A298679 nonn,easy
%O A298679 0,2
%A A298679 _Felix Fröhlich_, Jan 24 2018
%E A298679 More terms from _Colin Barker_, Jan 25 2018