cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298681 Start with the square tile of the Shield tiling and recursively apply the substitution rule. a(n) is the number of triangles with 6 markings after n iterations.

This page as a plain text file.
%I A298681 #13 Jan 29 2018 06:07:32
%S A298681 0,4,4,32,80,372,1236,4912,17728,67364,248996,934080,3476400,12993364,
%T A298681 48453364,180907472,675001760,2519449092,9402095556,35090331232,
%U A298681 130956433168,488740993844,1823996357396,6807266805360,25405026124800,94812927172324,353846503607524
%N A298681 Start with the square tile of the Shield tiling and recursively apply the substitution rule. a(n) is the number of triangles with 6 markings after n iterations.
%C A298681 The following substitution rules apply to the tiles:
%C A298681 triangle with 6 markings -> 1 hexagon
%C A298681 triangle with 4 markings -> 1 square, 2 triangles with 4 markings
%C A298681 square                   -> 1 square, 4 triangles with 6 markings
%C A298681 hexagon                  -> 7 triangles with 6 markings, 3 triangles with 4 markings, 3 squares
%H A298681 Colin Barker, <a href="/A298681/b298681.txt">Table of n, a(n) for n = 0..1000</a>
%H A298681 F. Gähler, <a href="https://doi.org/10.1016/0022-3093(93)90335-U">Matching rules for quasicrystals: the composition-decomposition method</a>, Journal of Non-Crystalline Solids, 153-154 (1993), 160-164.
%H A298681 Tilings Encyclopedia, <a href="https://tilings.math.uni-bielefeld.de/substitution/shield">Shield</a>
%H A298681 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,5,-9,2).
%F A298681 From _Colin Barker_, Jan 25 2018: (Start)
%F A298681 G.f.: 4*x*(1 - 2*x) / ((1 - x)*(1 + 2*x)*(1 - 4*x + x^2)).
%F A298681 a(n) = (1/39)*(26 + (-1)^(1+n)*2^(5+n) + (3-9*sqrt(3))*(2-sqrt(3))^n + (2+sqrt(3))^n*(3+9*sqrt(3))).
%F A298681 a(n) = 3*a(n-1) + 5*a(n-2) - 9*a(n-3) + 2*a(n-4) for n>3.
%F A298681 (End)
%o A298681 (PARI) /* The function substitute() takes as argument a 4-element vector, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons that are to be substituted. The function returns a vector w, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons resulting from the substitution. */
%o A298681 substitute(v) = my(w=vector(4)); for(k=1, #v, while(v[1] > 0, w[4]++; v[1]--); while(v[2] > 0, w[3]++; w[2]=w[2]+2; v[2]--); while(v[3] > 0, w[3]++; w[1]=w[1]+4; v[3]--); while(v[4] > 0, w[1]=w[1]+7; w[2]=w[2]+3; w[3]=w[3]+3; v[4]--)); w
%o A298681 terms(n) = my(v=[0, 0, 1, 0], i=0); while(1, print1(v[1], ", "); i++; if(i==n, break, v=substitute(v)))
%o A298681 (PARI) concat(0, Vec(4*x*(1 - 2*x) / ((1 - x)*(1 + 2*x)*(1 - 4*x + x^2)) + O(x^40))) \\ _Colin Barker_, Jan 25 2018
%Y A298681 Cf. A298678, A298679, A298680, A298682, A298683.
%K A298681 nonn,easy
%O A298681 0,2
%A A298681 _Felix Fröhlich_, Jan 24 2018
%E A298681 More terms from _Colin Barker_, Jan 25 2018