cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298683 Start with the square tile of the Shield tiling and recursively apply the substitution rule. a(n) is the number of squares after n iterations.

This page as a plain text file.
%I A298683 #27 Jun 27 2025 22:59:12
%S A298683 1,1,1,13,37,169,577,2269,8245,31225,115633,433357,1613701,6029641,
%T A298683 22488481,83957053,313274197,1169270809,4363546897,16285441069,
%U A298683 60777168805,226825331305,846519962113,3159262905757,11790514883701,44002830183481,164220738741361
%N A298683 Start with the square tile of the Shield tiling and recursively apply the substitution rule. a(n) is the number of squares after n iterations.
%C A298683 The following substitution rules apply to the tiles:
%C A298683 triangle with 6 markings -> 1 hexagon
%C A298683 triangle with 4 markings -> 1 square, 2 triangles with 4 markings
%C A298683 square                   -> 1 square, 4 triangles with 6 markings
%C A298683 hexagon                  -> 7 triangles with 6 markings, 3 triangles with 4 markings, 3 squares
%C A298683 a(n) is also one more than the number of triangles with 4 markings after n iterations when starting with the square tile.
%H A298683 Colin Barker, <a href="/A298683/b298683.txt">Table of n, a(n) for n = 0..1000</a>
%H A298683 F. Gähler, <a href="https://doi.org/10.1016/0022-3093(93)90335-U">Matching rules for quasicrystals: the composition-decomposition method</a>, Journal of Non-Crystalline Solids, 153-154 (1993), 160-164.
%H A298683 Tilings Encyclopedia, <a href="https://tilings.math.uni-bielefeld.de/substitution/shield">Shield</a>
%H A298683 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,5,-9,2).
%F A298683 G.f.: ((1-2*x)*(1-7*x^2))/((1-x)*(1+2*x)*(1-4*x+x^2)). - _Joerg Arndt_, Jan 25 2018
%F A298683 From _Colin Barker_, Jan 25 2018: (Start)
%F A298683 a(n) = (1/13)*(-13 + (-1)^(1+n)*2^(2+n) + (15-7*sqrt(3))*(2+sqrt(3))^n + (2-sqrt(3))^n*(15+7*sqrt(3))).
%F A298683 a(n) = 3*a(n-1) + 5*a(n-2) - 9*a(n-3) + 2*a(n-4) for n>3.
%F A298683 (End)
%F A298683 a(n) = ((15 - 7*sqrt(3))*(2 + sqrt(3))^n + (2 - sqrt(3))^n*(15 + 7*sqrt(3)) - 4*(-2)^n)/13 - 1. - _Bruno Berselli_, Jan 25 2018
%t A298683 CoefficientList[Series[((1 - 2 x) (1 - 7 x^2))/((1 - x) (1 + 2 x) (1 - 4 x + x^2)), {x, 0, 26}], x] (* or *)
%t A298683 LinearRecurrence[{3, 5, -9, 2}, {1, 1, 1, 13}, 27] (* _Michael De Vlieger_, Jan 28 2018 *)
%t A298683 f[n_] := Simplify[(-13 + (-1)^(n + 1)*2^(2 + n) + (15 - 7 Sqrt[3])*(2 + Sqrt[3])^n + (2 - Sqrt[3])^n*(15 + 7 Sqrt[3]))/13]; Array[f, 28, 0] (* _Robert G. Wilson v_, Feb 26 2018 *)
%o A298683 (PARI) /* The function substitute() takes as argument a 4-element vector, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons that are to be substituted. The function returns a vector w, where the first, second, third and fourth elements respectively are the number of triangles with 6 markings, the number of triangles with 4 markings, the number of squares and the number of hexagons resulting from the substitution. */
%o A298683 substitute(v) = my(w=vector(4)); for(k=1, #v, while(v[1] > 0, w[4]++; v[1]--); while(v[2] > 0, w[3]++; w[2]=w[2]+2; v[2]--); while(v[3] > 0, w[3]++; w[1]=w[1]+4; v[3]--); while(v[4] > 0, w[1]=w[1]+7; w[2]=w[2]+3; w[3]=w[3]+3; v[4]--)); w
%o A298683 terms(n) = my(v=[0, 0, 1, 0], i=0); while(1, print1(v[3], ", "); i++; if(i==n, break, v=substitute(v)))
%o A298683 (PARI) Vec(((1-2*x)*(1-7*x^2))/((1-x)*(1+2*x)*(1-4*x+x^2)) + O(x^40)) \\ _Colin Barker_, Jan 25 2018
%Y A298683 Cf. A298678, A298679, A298680, A298681, A298682.
%K A298683 nonn,easy
%O A298683 0,4
%A A298683 _Felix Fröhlich_, Jan 24 2018