cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298731 Number of distinct representations of n as a sum of four terms of A020330 (including 0), where order does not matter.

This page as a plain text file.
%I A298731 #16 Apr 10 2021 03:20:50
%S A298731 1,0,0,1,0,0,1,0,0,1,1,0,1,1,0,1,1,0,1,1,1,1,0,1,1,1,1,0,1,0,2,1,0,2,
%T A298731 0,1,2,0,1,1,2,0,1,1,0,4,1,0,2,1,1,2,1,0,3,2,1,2,1,1,3,2,0,3,2,1,4,1,
%U A298731 1,3,2,1,3,2,1,4,2,1,3,2,1,3,2,1,4,2,1,3,1,1,4,2,1,4,2,0,4,1,1,4,2,1,3,3,0,4,1
%N A298731 Number of distinct representations of n as a sum of four terms of A020330 (including 0), where order does not matter.
%H A298731 Amiram Eldar, <a href="/A298731/b298731.txt">Table of n, a(n) for n = 0..10000</a>
%H A298731 Parthasarathy Madhusudan, Dirk Nowotka, Aayush Rajasekaran and Jeffrey Shallit, <a href="https://drops.dagstuhl.de/opus/volltexte/2018/9600">Lagrange's Theorem for Binary Squares</a>, in: I. Potapov, P. Spirakis and J. Worrell (eds.), 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018), Schloss Dagstuhl, 2018, pp. 18:1-18:14; <a href="https://arxiv.org/abs/1710.04247">arXiv preprint</a>, arXiv:1710.04247 [math.NT], 2017-2018.
%e A298731 For n = 45, the a(45) = 4 solutions are 45 = 15+15+15 = 36+3+3+3 = 15+10+10+10.
%t A298731 v = Table[k + k * 2^Floor[Log2[k] + 1], {k, 0, 8}]; a[n_] := Length @ IntegerPartitions[n, {4}, v]; Table[a[n], {n, 0, v[[-1]]}] (* _Amiram Eldar_, Apr 09 2021 *)
%Y A298731 Cf. A020330, A290334, A290335 (which is the same sequence where order matters).
%K A298731 nonn
%O A298731 0,31
%A A298731 _Jeffrey Shallit_, Jan 25 2018