cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298739 First differences of A000001 (the number of groups of order n).

This page as a plain text file.
%I A298739 #23 Mar 22 2024 09:17:59
%S A298739 0,0,1,-1,1,-1,4,-3,0,-1,4,-4,1,-1,13,-13,4,-4,4,-3,0,-1,14,-13,0,3,
%T A298739 -1,-3,3,-3,50,-50,1,-1,13,-13,1,0,12,-13,5,-5,3,-2,0,-1,51,-50,3,-4,
%U A298739 4,-4,14,-13,11,-11,0,-1,12,-12,1,2,263,-266,3,-3
%N A298739 First differences of A000001 (the number of groups of order n).
%H A298739 Muniru A Asiru, <a href="/A298739/b298739.txt">Table of n, a(n) for n = 1..2046</a> [a(1023) and a(1024) corrected by Andrey Zabolotskiy]
%H A298739 H. U. Besche, B. Eick and E. A. O'Brien, <a href="https://doi.org/10.1142/S0218196702001115">A Millennium Project: Constructing Small Groups</a>, Internat. J. Algebra and Computation, 12 (2002), 623-644.
%H A298739 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/cubcay/">Numbers of Small Groups</a> [dead link]
%H A298739 <a href="/index/Gre#groups">Index entries for sequences related to groups</a>
%F A298739 a(n) = A000001(n+1) - A000001(n).
%e A298739 There is only one group of order 1 and of order 2, so a(1) = A000001(2) - A000001(1) = 1 - 1 = 0.
%e A298739 There are 2 groups of order 4 and 3 is a cyclic number, so a(3) = A000001(4) - A000001(3) = 2 - 1 = 1.
%p A298739 with(GroupTheory): seq((NumGroups(n+1) - NumGroups(n), n=1..500));
%t A298739 (* Please note that, as of version 14, the Mathematica function FiniteGroupCount returns a wrong value for n = 1024 (49487365422 instead of 49487367289). *)
%t A298739 Differences[FiniteGroupCount[Range[100]]] (* _Paolo Xausa_, Mar 22 2024 *)
%o A298739 (GAP) List([1..700],n -> NumberSmallGroups(n+1) - NumberSmallGroups(n));
%Y A298739 Cf. A000001 (Number of groups of order n).
%K A298739 sign
%O A298739 1,7
%A A298739 _Muniru A Asiru_, Jan 25 2018