This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298755 #17 Oct 02 2023 13:45:07 %S A298755 4,6,6,6,8,7,8,9,8,8,10,9,9,10,10,10,10,11,11,12,12,12,11,11,12,12,12, %T A298755 13,12,12,13,13,13,13,14,14,13,13,14,14,14,14,14,14,14,15,14,15,15,15, %U A298755 15,15,16,15,16,15,16,16,15,15,16,16,16,16,16,16,16,16,17,17,16,17,17,17,17,17 %N A298755 Quantitative (discrete) Helly numbers for the integer lattice Z^2. %C A298755 a(n) = c(Z^2,n) is the smallest k>0 such that for every collection of convex sets C_1, ..., C_m having n points of Z^2 in common, there exists a subset of this collection of at most k elements such that they still contain exactly n points of Z^2 in common. %C A298755 c(Z^2,n) = g(Z^2,n) = A298562(n) for n = 0, 1, ..., 200, but it is not known whether they agree for every n or not. %H A298755 G. Averkov, B. González Merino, I. Paschke, M. Schymura, and S. Weltge, <a href="https://arxiv.org/abs/1602.07839">Tight bounds on discrete quantitative Helly numbers</a>, arXiv:1602.07839 [math.CO], 2016. See Fig. 3 p. 5. %H A298755 G. Averkov, B. González Merino, I. Paschke, M. Schymura, and S. Weltge, <a href="https://doi.org/10.1016/j.aam.2017.04.003">Tight bounds on discrete quantitative Helly numbers</a>, Adv. in Appl. Math., 89 (2017), 76--101. %F A298755 a(n) = max_{m=0..n} (A298562(m) + m - n). [Averkov et al.] - _Andrey Zabolotskiy_, Oct 02 2023 %Y A298755 Cf. A298562. %K A298755 nonn %O A298755 0,1 %A A298755 _Bernardo González Merino_, Jan 26 2018 %E A298755 a(31) onwards from _Andrey Zabolotskiy_, Oct 02 2023