This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298760 #15 Feb 16 2025 08:33:53 %S A298760 1,2,6,10,46,102,7186,6382932 %N A298760 Numbers k such that there is a record number of consecutive prime centered k-gonal numbers after 1. %C A298760 The number of consecutive primes is 1, 3, 4, 7, 8, 9, 10, 11. %H A298760 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CenteredPolygonalNumber.html">Centered Polygonal Number</a> %H A298760 Wikipedia, <a href="https://en.wikipedia.org/wiki/Centered_polygonal_number">Centered polygonal number</a> %e A298760 The first 8 centered 10-gonal numbers (A062786) are 1, 11, 31, 61, 101, 151, 211, 281, and all of them except for 1 are primes (A090562). The previous record is 4 primes, for centered hexagonal numbers 7, 19, 37, 61 (A003215), therefore 6 and 10 are in the sequence. %e A298760 From _Michel Marcus_, Feb 12 2018: (Start) %e A298760 Number of primes after the 1 %e A298760 1: 1 2 4 7 11 16 ... : 1 <- record %e A298760 2: 1 3 7 13 21 31 ... : 3 <- record %e A298760 3: 1 4 10 19 31 46 ... : 0 %e A298760 4: 1 5 13 25 41 61 ... : 2 %e A298760 5: 1 6 16 31 51 76 ... : 0 %e A298760 6: 1 7 19 37 61 91 ... : 4 <- record %e A298760 .... %e A298760 (End) %t A298760 f[n_, k_] := k*n (n - 1)/2 + 1; a[k_] := Module[{n = 2}, While[PrimeQ[f[n, k]], n++]; n - 2]; am = 0; seq={}; Do[a1 = a[n]; If[a1 > am, AppendTo[seq, n]; am = a1], {n,1,10^7}]; seq %Y A298760 Cf. A000124, A002061, A003215, A062786, A090562. %K A298760 nonn,more %O A298760 1,2 %A A298760 _Amiram Eldar_, Jan 26 2018