cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298760 Numbers k such that there is a record number of consecutive prime centered k-gonal numbers after 1.

This page as a plain text file.
%I A298760 #15 Feb 16 2025 08:33:53
%S A298760 1,2,6,10,46,102,7186,6382932
%N A298760 Numbers k such that there is a record number of consecutive prime centered k-gonal numbers after 1.
%C A298760 The number of consecutive primes is 1, 3, 4, 7, 8, 9, 10, 11.
%H A298760 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CenteredPolygonalNumber.html">Centered Polygonal Number</a>
%H A298760 Wikipedia, <a href="https://en.wikipedia.org/wiki/Centered_polygonal_number">Centered polygonal number</a>
%e A298760 The first 8 centered 10-gonal numbers (A062786) are 1, 11, 31, 61, 101, 151, 211, 281, and all of them except for 1 are primes (A090562). The previous record is 4 primes, for centered hexagonal numbers 7, 19, 37, 61 (A003215), therefore 6 and 10 are in the sequence.
%e A298760 From _Michel Marcus_, Feb 12 2018: (Start)
%e A298760   Number of primes after the 1
%e A298760 1: 1  2  4  7  11  16 ...  : 1   <- record
%e A298760 2: 1  3  7 13  21  31 ...  : 3   <- record
%e A298760 3: 1  4 10 19  31  46 ...  : 0
%e A298760 4: 1  5 13 25  41  61 ...  : 2
%e A298760 5: 1  6 16 31  51  76 ...  : 0
%e A298760 6: 1  7 19 37  61  91 ...  : 4   <- record
%e A298760 ....
%e A298760 (End)
%t A298760 f[n_, k_] := k*n (n - 1)/2 + 1; a[k_] := Module[{n = 2}, While[PrimeQ[f[n, k]], n++]; n - 2]; am = 0; seq={}; Do[a1 = a[n]; If[a1 > am, AppendTo[seq, n]; am = a1], {n,1,10^7}]; seq
%Y A298760 Cf. A000124, A002061, A003215, A062786, A090562.
%K A298760 nonn,more
%O A298760 1,2
%A A298760 _Amiram Eldar_, Jan 26 2018