A298763 Numbers that are the smallest of four consecutive primes, no three of which sum to a nonprime.
19, 29, 1303, 3119, 4933, 6353, 7841, 10859, 13933, 24749, 26513, 28603, 31069, 33487, 38609, 43067, 52387, 53731, 61979, 78031, 91781, 93871, 97561, 102929, 108127, 112403, 113341, 114599, 141937, 144967, 151883, 151969, 192883, 224909, 267961, 270371, 270577, 270763, 281531, 282959, 285979
Offset: 1
Keywords
Examples
19, 23, 29, 31 are four consecutive primes. The four ways of adding three of them yields 71, 73, 79, 83, all of which are prime. So 19 is a term of the sequence.
Links
- Hans Havermann, Table of n, a(n) for n = 1..10000
Crossrefs
Subsequence of A073681.
Programs
-
Mathematica
s={2,3,5,7}; p=s[[-1]]; While[p<10^6, If[PrimeQ[s[[1]]+s[[2]]+s[[3]]]&&PrimeQ[s[[1]]+s[[2]]+s[[4]]]&&PrimeQ[s[[1]]+s[[3]]+s[[4]]]&&PrimeQ[s[[2]]+s[[3]]+s[[4]]], Print[s[[1]]]]; p=NextPrime[p]; s=Join[Rest[s],{p}]]