cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298804 Triangle T(n,k) (1 <= k <= n) read by rows: A046936 with rows reversed and offset changed to 1.

Original entry on oeis.org

0, 1, 1, 3, 2, 1, 9, 6, 4, 3, 31, 22, 16, 12, 9, 121, 90, 68, 52, 40, 31, 523, 402, 312, 244, 192, 152, 121
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2018, following a suggestion from Don Knuth, Jan 29 2018

Keywords

Comments

This is another version of Moser's version (A046936) of Aitken's array (A011971).
Although offset 0 is better for A011971 and A046936, for this version offset 1 is more appropriate.
Comments from Don Knuth, Jan 29 2018 (Start):
a(n,k) is the number of set partitions (i.e. equivalence classes) in which (i) 1 is not equivalent to 2, ..., nor k; and (ii) the last part, when parts are ordered by their smallest element, has size 1; (iii) that last part isn't simply "1". (Equivalently, n>1.)
It's not difficult to prove this characterization of a(k,n). For example, if we know that there are 22 partitions of {1,2,3,4,5} with 1 inequivalent to 2, and 6 partitions of {1,2,3,4} with
1 inequivalent to 2, then there are 6 partitions of {1,2,3,4,5} with 1 inequivalent to 2 and 1 equivalent to 3. Hence there are 16 with 1 equivalent to neither 2 nor 3.
The same property, but leaving out conditions (ii) and (iii), characterizes Pierce's triangular array A123346. (End)

Examples

			Triangle begins:
0,
1, 1,
3, 2, 1,
9, 6, 4, 3,
31, 22, 16, 12, 9,
121, 90, 68, 52, 40, 31
523, 402, 312, 244, 192, 152, 121
...
		

Crossrefs