This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298821 #15 May 27 2025 10:09:27 %S A298821 706866045116113,706866045126361,706866045126697,706866045126907, %T A298821 706866045128377,706866045128563,706866045128953,706866045129163, %U A298821 706866045129403,706866045130057,706866045130153,706866045130459,706866045130723,706866045130771,706866045131107,706866045155113,706866045155899,706866045156043,706866045156409,706866045156499 %N A298821 Primes p for which pi_{24,19}(p) - pi_{24,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m). %C A298821 This is a companion sequence to A298820 and the first discovered for pi_{24,19}(p) - pi_{24,1}(p) prime race. The full sequence up to 10^15 contains 5 sign-changing zones with 3436990 terms in total with A(3436990) = 766164822666883 as the last one. %H A298821 Andrey S. Shchebetov and Sergei D. Shchebetov, <a href="/A298821/b298821.txt">Table of n, a(n) for n = 1..100000</a> %H A298821 A. Granville and G. Martin, <a href="https://web.archive.org/web/20240529054811/https://maa.org/sites/default/files/pdf/upload_library/22/Ford/granville1.pdf">Prime Number Races</a>, Amer. Math. Monthly 113 (2006), no. 1, 1-33. %H A298821 Richard H. Hudson and Carter Bays, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002194864">The appearance of tens of billion of integers x with pi_{24, 13}(x) < pi_{24, 1}(x) in the vicinity of 10^12</a>, Journal für die reine und angewandte Mathematik, 299/300 (1978), 234-237. MR 57 #12418. %H A298821 M. Rubinstein and P. Sarnak, <a href="https://projecteuclid.org/euclid.em/1048515870">Chebyshev’s bias</a>, Experimental Mathematics, Volume 3, Issue 3, 1994, Pages 173-197. %H A298821 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeQuadraticEffect.html">Prime Quadratic Effect</a>. %Y A298821 Cf. A295355, A295356, A297449, A297450 %K A298821 nonn %O A298821 1,1 %A A298821 Andrey S. Shchebetov and _Sergei D. Shchebetov_, Jan 27 2018