This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298854 #34 Apr 01 2021 18:07:00 %S A298854 1,1,1,2,3,2,6,11,11,6,24,50,61,50,24,120,274,379,379,274,120,720, %T A298854 1764,2668,3023,2668,1764,720,5040,13068,21160,26193,26193,21160, %U A298854 13068,5040,40320,109584,187388,248092,270961,248092,187388,109584,40320,362880,1026576,1836396,2565080,2995125,2995125,2565080,1836396,1026576,362880 %N A298854 Characteristic polynomials of Jacobi coordinates. Triangle read by rows, T(n, k) for 0 <= k <= n. %C A298854 This is just a different normalization of A223256 and A223257. %F A298854 P(0)=1 and P(n) = n * (x + 1) * P(n - 1) - (n - 1)^2 * x * P(n - 2). %e A298854 For n = 3, the polynomial is 6*x^3 + 11*x^2 + 11*x + 6. %e A298854 The first few polynomials, as a table: %e A298854 [ 1], %e A298854 [ 1, 1], %e A298854 [ 2, 3, 2], %e A298854 [ 6, 11, 11, 6], %e A298854 [ 24, 50, 61, 50, 24], %e A298854 [120, 274, 379, 379, 274, 120] %p A298854 b:= proc(n) option remember; `if`(n<1, n+1, expand( %p A298854 n*(x+1)*b(n-1)-(n-1)^2*x*b(n-2))) %p A298854 end: %p A298854 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)): %p A298854 seq(T(n), n=0..10); # _Alois P. Heinz_, Apr 01 2021 %t A298854 P[0] = 1 ; P[1] = x + 1; %t A298854 P[n_] := P[n] = n (x + 1) P[n - 1] - (n - 1)^2 x P[n - 2]; %t A298854 Table[CoefficientList[P[n], x], {n, 0, 9}] // Flatten (* _Jean-François Alcover_, Mar 16 2020 *) %o A298854 (Sage) %o A298854 @cached_function %o A298854 def poly(n): %o A298854 x = polygen(ZZ, 'x') %o A298854 if n < 0: %o A298854 return x.parent().zero() %o A298854 elif n == 0: %o A298854 return x.parent().one() %o A298854 else: %o A298854 return n * (x + 1) * poly(n - 1) - (n - 1)**2 * x * poly(n - 2) %o A298854 A298854_row = lambda n: list(poly(n)) %o A298854 for n in (0..7): print(A298854_row(n)) %Y A298854 Closely related to A223256 and A223257. %Y A298854 Row sums are A002720. %Y A298854 Leftmost and rightmost columns are A000142. %Y A298854 Alternating row sums are A177145. %Y A298854 Absolute value of evaluation at x = exp(2*i*Pi/3) is A080171. %Y A298854 Evaluation at x=2 gives A187735. %K A298854 tabl,nonn,easy %O A298854 0,4 %A A298854 _F. Chapoton_, Jan 27 2018