This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298855 #13 Jan 28 2018 13:14:50 %S A298855 21,33,39,51,55,57,65,69,85,87,93,95,111,115,119,123,129,133,141,145, %T A298855 155,159,161,177,183,185,201,203,205,213,215,217,219,235,237,249,253, %U A298855 259,265,267,287,291,295,301,303,305,309,319,321,327,329,335,339,341,355,365,371,377,381,393,395 %N A298855 Squarefree semiprimes p*q for which the symmetric representation of sigma(p*q) has four parts, in increasing order. %C A298855 All numbers in this sequence are odd since the symmetric representation of 2*p, p prime > 3, has two parts each of size 3*(p+1)/2, and that for 6 has one part of size 12. %C A298855 A number in this sequence has the form p*q, p and q prime, 3 <= p and 2*p < q, since in this case 2*p <= floor((sqrt(8*p*q + 1) - 1)/2) < q so that 1's in row p*q of A237048 occur only in positions 1, 2, p and 2*p. %C A298855 This sequence is a subsequence of A046388, hence of A006881, as well as of A174905, A241008 and A280107. %C A298855 The two central parts of the symmetric representation of sigma(p*q), each of size (p+q)/2, meet on the diagonal when q = 2*p + 1 since in this case 2*p = floor((sqrt(8*p*q + 1) - 1)/2). These triangular numbers p*(2p+1) form sequence A156592, except for its first element 10, and form a subsequence of the diagonal in the associated irregular triangle of this sequence given in the Example section. They also are a subsequence of A264104. A function to compute the coordinates on the diagonal where the two central parts meet is defined in sequence A240542. %C A298855 Except for missing 10 the intersection of this sequence and A298856 equals A156592. %e A298855 21=3*7 is the smallest number in the sequence since 2*3<7. %e A298855 1081=23*(2*23+1) is in the sequence; its central parts meet at 751 on the diagonal. %e A298855 The semiprimes p*q can be arranged as an irregular triangle with rows and columns labeled by the respective odd primes: %e A298855 q\p| 3 5 7 11 13 17 19 23 %e A298855 ---+--------------------------------------- %e A298855 7 | 21 %e A298855 11 | 33 55 %e A298855 13 | 39 65 %e A298855 17 | 51 85 119 %e A298855 19 | 57 95 133 %e A298855 23 | 69 115 161 253 %e A298855 29 | 87 145 203 319 377 %e A298855 31 | 93 155 217 341 403 %e A298855 37 | 111 185 259 407 481 629 %e A298855 41 | 123 205 287 451 533 697 779 %e A298855 43 | 129 215 301 473 559 731 817 %e A298855 47 | 141 235 329 517 611 799 893 1081 %t A298855 (* Function a237270[] is defined in A237270 *) %t A298855 a006881Q[n_] := Module[{f=FactorInteger[n]}, Length[f]==2 && AllTrue[Last[Transpose[f]], #==1&]] %t A298855 a298855[m_, n_] := Select[Range[m, n], a006881Q[#] && Length[a237270[#]]==4 &] %t A298855 a298855[1, 400] (* data *) %t A298855 (* column for prime p through number n *) %t A298855 stalk[n_, p_] := Select[a298855[1, n], First[First[FactorInteger[#]]]==p&] %Y A298855 Cf. A001358, A005384, A005385, A006881, A046388, A068443, A156592, A174905, A237048, A237270, A237593, A240542, A241008, A264104, A280107, A298856. %K A298855 nonn,tabf %O A298855 1,1 %A A298855 _Hartmut F. W. Hoft_, Jan 27 2018