This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298860 #22 Feb 16 2025 08:33:53 %S A298860 1,3,6,8,18,12,1,5,5,7,18,16,1,2,8,9,20,12,1,5,5,9,20,15,1,4,7,8,20, %T A298860 18,2,5,5,8,20,20,2,5,5,10,22,18,3,5,5,9,22,24,2,4,7,11,24,20,3,5,5, %U A298860 11,24,21,4,5,5,10,24,28,2,6,7,9,24,30,4,5,5,12,26,24,3,4,8,11,26,30,4,5,7,10,26,36,2,5,10,11,28,36,1,7,8,14,30,28,1,8,9,12,30,42 %N A298860 Primitive cyclic quadrilaterals with integer area. %C A298860 Entries are listed as sextuples: (a,b,c,d), Perimeter, Area. They are ordered first by perimeter, second by area, third by a, then b, then c, then d. Rectangles and kites with two right angles are not listed; thus a < b <= c <= d. By "primitive" we mean (a,b,c,d) is not a multiple of any earlier quadruple. %C A298860 We observe that the number of odd integers in any quadruple is always an even number. %H A298860 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CyclicQuadrilateral.html">Cyclic Quadrilateral</a> %H A298860 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cyclic_quadrilateral">Cyclic quadrilateral</a> %e A298860 The first row of the table gives sidelengths (a,b,c,d)=(1,3,6,8) with perimeter=18 and area=12. Thus: %e A298860 a b c d Perim Area %e A298860 = = = == ===== ==== %e A298860 1 3 6 8 18 12 %e A298860 1 5 5 7 18 16 %e A298860 1 2 8 9 20 12 %e A298860 1 5 5 9 20 15 %e A298860 1 4 7 8 20 18 %e A298860 2 5 5 8 20 20 %e A298860 2 5 5 10 22 18 %e A298860 3 5 5 9 22 24 %e A298860 2 4 7 11 24 20 %e A298860 3 5 5 11 24 21 %e A298860 4 5 5 10 24 28 %e A298860 etc. %Y A298860 Cf. A298907, A297790, A210250, A230136, A131020, A218431, A219225, A233315, A242778, A273691, A273890. %K A298860 nonn,tabf %O A298860 1,2 %A A298860 _Gregory Gerard Wojnar_, Jan 27 2018