This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298868 #8 Apr 18 2018 02:59:25 %S A298868 1,4,6,8,11,14,15,17,19,21,24,26,27,29,32,33,34,37,41,42,45,46,48,52, %T A298868 53,54,57,58,59,61,64,67,70,72,73,74,77,79,82,83,87,90,92,93,94,96,98, %U A298868 100,101,104,105,107,111,113,115,118,119,120,122,125,126,127 %N A298868 Solution (a(n)) of the system of 3 complementary equations in Comments. %C A298868 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2: %C A298868 a(n) = least new; %C A298868 b(n) = least new k >= a(n) + n; %C A298868 c(n) = a(n) + b(n); %C A298868 where "least new k" means the least positive integer not yet placed. %C A298868 *** %C A298868 The sequences a,b,c partition the positive integers. Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then %C A298868 x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67)); %C A298868 x = 2.07816258732933084676..., and a(n)/n -> x, b(n)/n -> x+1, and c(n)/n -> 2x+1. %H A298868 Clark Kimberling, <a href="/A298868/b298868.txt">Table of n, a(n) for n = 0..1000</a> %e A298868 n: 0 1 2 3 4 5 6 7 8 9 %e A298868 a: 1 4 6 8 11 14 15 17 19 21 %e A298868 b: 2 5 7 10 12 16 20 22 25 28 %e A298868 c: 3 9 13 18 23 30 35 39 44 49 %t A298868 z = 400; %t A298868 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A298868 a = {1}; b = {2}; c = {}; AppendTo[c, Last[a] + Last[b]]; n = 0; %t A298868 Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]], %t A298868 AppendTo[b, mex[Flatten[{a, b, c}], a[[n]] + n]], %t A298868 AppendTo[c, Last[a] + Last[b]]}, {z}]; %t A298868 Take[a, 100] (* A298868 *) %t A298868 Take[b, 100] (* A298869 *) %t A298868 Take[c, 100] (* A298870 *) %t A298868 (* _Peter J. C. Moses_, Apr 08 2018 *) %Y A298868 Cf. A299634, A298869, A298870. %K A298868 nonn,easy %O A298868 0,2 %A A298868 _Clark Kimberling_, Apr 17 2018