This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298869 #6 Apr 17 2018 23:08:00 %S A298869 2,5,7,10,12,16,20,22,25,28,31,36,38,40,43,47,50,51,56,60,63,66,68,71, %T A298869 76,78,81,85,86,89,91,95,99,103,106,109,110,114,117,121,124,128,133, %U A298869 135,137,139,142,146,148,151,154,156,159,164,167,170,174,176,178 %N A298869 Solution (b(n)) of the system of 3 complementary equations in Comments. %C A298869 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2: %C A298869 a(n) = least new; %C A298869 b(n) = least new k >= a(n) + n; %C A298869 c(n) = a(n) + b(n); %C A298869 where "least new k" means the least positive integer not yet placed. %C A298869 *** %C A298869 The sequences a,b,c partition the positive integers. Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then %C A298869 x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67)); %C A298869 x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n -> 2x+1. %H A298869 Clark Kimberling, <a href="/A298869/b298869.txt">Table of n, a(n) for n = 0..1000</a> %e A298869 n: 0 1 2 3 4 5 6 7 8 9 %e A298869 a: 1 4 6 8 11 14 15 17 19 21 %e A298869 b: 2 5 7 10 12 16 20 22 25 28 %e A298869 c: 3 9 13 18 23 30 35 39 44 49 %t A298869 z = 400; %t A298869 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A298869 a = {1}; b = {2}; c = {}; AppendTo[c, Last[a] + Last[b]]; n = 0; %t A298869 Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]], %t A298869 AppendTo[b, mex[Flatten[{a, b, c}], a[[n]] + n]], %t A298869 AppendTo[c, Last[a] + Last[b]]}, {z}]; %t A298869 Take[a, 100] (* A298868 *) %t A298869 Take[b, 100] (* A298869 *) %t A298869 Take[c, 100] (* A298870 *) %t A298869 (* _Peter J. C. Moses_, Apr 08 2018 *) %Y A298869 Cf. A299634, A298868, A298870. %K A298869 nonn,easy %O A298869 0,1 %A A298869 _Clark Kimberling_, Apr 17 2018