This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298870 #8 May 05 2018 04:18:46 %S A298870 3,9,13,18,23,30,35,39,44,49,55,62,65,69,75,80,84,88,97,102,108,112, %T A298870 116,123,129,132,138,143,145,150,155,162,169,175,179,183,187,193,199, %U A298870 204,211,218,225,228,231,235,240,246,249,255,259,263,270,277,282,288 %N A298870 Solution (c(n)) of the system of 3 complementary equations in Comments. %C A298870 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2: %C A298870 a(n) = least new; %C A298870 b(n) = least new k >= a(n) + n; %C A298870 c(n) = a(n) + b(n); %C A298870 where "least new k" means the least positive integer not yet placed. %C A298870 *** %C A298870 The sequences a,b,c partition the positive integers. Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then %C A298870 x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67)) %C A298870 x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n - > 2x+1. %H A298870 Clark Kimberling, <a href="/A298870/b298870.txt">Table of n, a(n) for n = 0..1000</a> %e A298870 n: 0 1 2 3 4 5 6 7 8 9 %e A298870 a: 1 4 6 8 11 14 15 17 19 21 %e A298870 b: 2 5 7 10 12 16 20 22 25 28 %e A298870 c: 3 9 13 18 23 30 35 39 44 49 %t A298870 z = 400; %t A298870 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A298870 a = {1}; b = {2}; c = {}; AppendTo[c, Last[a] + Last[b]]; n = 0; %t A298870 Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]], %t A298870 AppendTo[b, mex[Flatten[{a, b, c}], a[[n]] + n]], %t A298870 AppendTo[c, Last[a] + Last[b]]}, {z}]; %t A298870 Take[a, 100] (* A298868 *) %t A298870 Take[b, 100] (* A298869 *) %t A298870 Take[c, 100] (* A298870 *) %t A298870 (* _Peter J. C. Moses_, Apr 08 2018 *) %Y A298870 Cf. A299634, A298868, A298869. %K A298870 nonn,easy %O A298870 0,1 %A A298870 _Clark Kimberling_, Apr 18 2018