This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298871 #4 Apr 18 2018 19:49:25 %S A298871 1,4,5,7,8,9,10,12,13,14,15,17,19,20,21,22,23,24,25,28,29,30,31,32,33, %T A298871 34,36,37,38,39,40,41,42,44,46,47,48,49,50,51,52,53,54,55,56,58,59,61, %U A298871 62,63,64,65,66,67,68,69,71,72,73,74,75,76,77,78,80,81 %N A298871 Solution (a(n)) of the system of 3 complementary equations in Comments. %C A298871 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2: %C A298871 a(n) = least new; %C A298871 b(n) = least new k >= a(n) + b(n-1); %C A298871 c(n) = a(n) + 2 b(n); %C A298871 where "least new k" means the least positive integer not yet placed. The sequences a,b,c partition the positive integers. %H A298871 Clark Kimberling, <a href="/A298871/b298871.txt">Table of n, a(n) for n = 0..1000</a> %e A298871 n: 0 1 2 3 4 5 6 7 8 9 %e A298871 a: 1 4 5 7 8 9 10 12 13 14 %e A298871 b: 2 6 11 18 26 35 45 57 70 84 %e A298871 c: 3 16 27 43 60 30 79 100 126 153 %t A298871 z = 400; %t A298871 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A298871 a = {1}; b = {2}; c = {3}; %t A298871 Do[{AppendTo[a, mex[Flatten[{a, b, c}], 1]], %t A298871 AppendTo[b, mex[Flatten[{a, b, c}], Last[a] + Last[b]]], %t A298871 AppendTo[c, Last[a] + 2 Last[b]]}, {z}]; %t A298871 Take[a, 100] (* A298871 *) %t A298871 Take[b, 100] (* A298872 *) %t A298871 Take[c, 100] (* A298873 *) %Y A298871 Cf. A299634, A298872, A298873, A298874. %K A298871 nonn,easy %O A298871 0,2 %A A298871 _Clark Kimberling_, Apr 18 2018