This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298872 #5 Apr 18 2018 19:49:31 %S A298872 2,6,11,18,26,35,45,57,70,84,99,116,135,155,176,198,221,245,270,298, %T A298872 327,357,388,420,453,487,523,560,598,637,677,718,760,804,850,897,945, %U A298872 994,1044,1095,1147,1200,1254,1309,1365,1423,1482,1543,1605,1668,1732 %N A298872 Solution (b(n)) of the system of 3 complementary equations in Comments. %C A298872 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2: %C A298872 a(n) = least new; %C A298872 b(n) = least new k >= a(n) + b(n-1); %C A298872 c(n) = a(n) + 2 b(n); %C A298872 where "least new k" means the least positive integer not yet placed. The sequences a,b,c partition the positive integers. %H A298872 Clark Kimberling, <a href="/A298872/b298872.txt">Table of n, a(n) for n = 0..1000</a> %e A298872 n: 0 1 2 3 4 5 6 7 8 9 %e A298872 a: 1 4 5 7 8 9 10 12 13 14 %e A298872 b: 2 6 11 18 26 35 45 57 70 84 %e A298872 c: 3 16 27 43 60 30 79 100 126 153 %t A298872 z = 400; %t A298872 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A298872 a = {1}; b = {2}; c = {3}; %t A298872 Do[{AppendTo[a, mex[Flatten[{a, b, c}], 1]], %t A298872 AppendTo[b, mex[Flatten[{a, b, c}], Last[a] + Last[b]]], %t A298872 AppendTo[c, Last[a] + 2 Last[b]]}, {z}]; %t A298872 Take[a, 100] (* A298871 *) %t A298872 Take[b, 100] (* A298872 *) %t A298872 Take[c, 100] (* A298873 *) %Y A298872 Cf. A299634, A298871, A298873, A298875. %K A298872 nonn,easy %O A298872 0,1 %A A298872 _Clark Kimberling_, Apr 18 2018