This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298873 #4 Apr 18 2018 19:49:38 %S A298873 3,16,27,43,60,79,100,126,153,182,213,249,289,330,373,418,465,514,565, %T A298873 624,683,744,807,872,939,1008,1082,1157,1234,1313,1394,1477,1562,1652, %U A298873 1746,1841,1938,2037,2138,2241,2346,2453,2562,2673,2786,2904,3023,3147 %N A298873 Solution (c(n)) of the system of 3 complementary equations in Comments. %C A298873 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2: %C A298873 a(n) = least new; %C A298873 b(n) = least new k >= a(n) + b(n-1); %C A298873 c(n) = a(n) + 2 b(n); %C A298873 where "least new k" means the least positive integer not yet placed. The sequences a,b,c partition the positive integers. %H A298873 Clark Kimberling, <a href="/A298873/b298873.txt">Table of n, a(n) for n = 0..1000</a> %e A298873 n: 0 1 2 3 4 5 6 7 8 9 %e A298873 a: 1 4 5 7 8 9 10 12 13 14 %e A298873 b: 2 6 11 18 26 35 45 57 70 84 %e A298873 c: 3 16 27 43 60 30 79 100 126 153 %t A298873 z = 400; %t A298873 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A298873 a = {1}; b = {2}; c = {3}; %t A298873 Do[{AppendTo[a, mex[Flatten[{a, b, c}], 1]], %t A298873 AppendTo[b, mex[Flatten[{a, b, c}], Last[a] + Last[b]]], %t A298873 AppendTo[c, Last[a] + 2 Last[b]]}, {z}]; %t A298873 Take[a, 100] (* A298871 *) %t A298873 Take[b, 100] (* A298872 *) %t A298873 Take[c, 100] (* A298873 *) %Y A298873 Cf. A299634, A298871, A298872, A298874. %K A298873 nonn,easy %O A298873 0,1 %A A298873 _Clark Kimberling_, Apr 18 2018