This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298874 #7 Apr 21 2018 20:57:13 %S A298874 1,4,5,7,8,9,10,12,13,14,15,17,19,20,21,22,23,24,25,28,29,30,31,32,33, %T A298874 34,36,37,38,39,40,41,42,44,46,47,48,49,50,51,52,53,54,55,56,58,59,61, %U A298874 62,63,64,65,66,67,68,69,71,72,73,74,75,76,77,78,80,81 %N A298874 Solution (a(n)) of the system of 3 equations in Comments. %C A298874 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2: %C A298874 a(n) = least new; %C A298874 b(n) = a(n) + b(n-1); %C A298874 c(n) = a(n) + 2 b(n); %C A298874 where "least new k" means the least positive integer not yet placed. %C A298874 *** %C A298874 Do these sequences a,b,c partition the positive integers? They differ from the corresponding partitioning sequences A298871, A298872, and A298872. For example, A298872(56) = 2139, whereas A298875(56) = 2138. %H A298874 Clark Kimberling, <a href="/A298874/b298874.txt">Table of n, a(n) for n = 0..1000</a> %e A298874 n: 0 1 2 3 4 5 6 7 8 9 %e A298874 a: 1 4 5 7 8 9 10 12 13 14 %e A298874 b: 2 6 11 18 26 35 45 57 70 84 %e A298874 c: 3 16 27 43 60 30 79 100 126 153 %t A298874 z = 200; %t A298874 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A298874 a = {1}; b = {2}; c = {3}; %t A298874 Do[{AppendTo[a, mex[Flatten[{a, b, c}], 1]], %t A298874 AppendTo[b, Last[a] + Last[b]], %t A298874 AppendTo[c, Last[a] + 2 Last[b]]}, {z}]; %t A298874 Take[a, 100] (* A298874 *) %t A298874 Take[b, 100] (* A298875 *) %t A298874 Take[c, 100] (* A298876 *) %Y A298874 Cf. A299634, A298871, A298875, A298876. %K A298874 nonn,easy %O A298874 0,2 %A A298874 _Clark Kimberling_, Apr 19 2018