This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298882 #10 Jan 31 2018 06:32:54 %S A298882 1,2,3,4,5,8,7,16,6,32,11,64,13,128,9,256,17,512,19,1024,12,2048,23, %T A298882 4096,10,8192,18,16384,29,32768,31,65536,24,131072,15,262144,37, %U A298882 524288,27,1048576,41,2097152,43,4194304,36,8388608,47,16777216,14,33554432,48 %N A298882 a(1) = 1, and for any n > 1, if n is the k-th number with least prime factor p, then a(n) is the k-th number with greatest prime factor p. %C A298882 This sequence is a permutation of the natural numbers, with inverse A298268. %C A298882 For any prime p and k > 0: %C A298882 - if s_p(k) is the k-th p-smooth number and r_p(k) is the k-th p-rough number, %C A298882 - then a(p * r_p(k)) = p * s_p(k), %C A298882 - for example: a(11 * A008364(k)) = 11 * A051038(k). %H A298882 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A298882 a(1) = 1. %F A298882 a(A083140(n, k)) = A125624(n, k) for any n > 0 and k > 0. %F A298882 a(n) = A125624(A055396(n), A078898(n)) for any n > 1. %F A298882 Empirically: %F A298882 - a(n) = n iff n belongs to A046022, %F A298882 - a(2 * k) = 2^k for any k > 0, %F A298882 - a(p^2) = 2 * p for any prime p, %F A298882 - a(p * q) = 3 * p for any pair of consecutive odd primes (p, q). %e A298882 The first terms, alongside A020639(n), are: %e A298882 n a(n) lpf(n) %e A298882 -- ---- ------ %e A298882 1 1 1 %e A298882 2 2 2 %e A298882 3 3 3 %e A298882 4 4 2 %e A298882 5 5 5 %e A298882 6 8 2 %e A298882 7 7 7 %e A298882 8 16 2 %e A298882 9 6 3 %e A298882 10 32 2 %e A298882 11 11 11 %e A298882 12 64 2 %e A298882 13 13 13 %e A298882 14 128 2 %e A298882 15 9 3 %e A298882 16 256 2 %e A298882 17 17 17 %e A298882 18 512 2 %e A298882 19 19 19 %e A298882 20 1024 2 %Y A298882 Cf. A008364, A020639, A046022, A051038, A055396, A078898, A083140, A125624, A298268 (inverse). %K A298882 nonn %O A298882 1,2 %A A298882 _Rémy Sigrist_, Jan 28 2018