cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A298885 Number of nX5 0..1 arrays with every element equal to 1, 2, 4, 6 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

3, 23, 23, 73, 123, 243, 444, 897, 1801, 3462, 6669, 13291, 25762, 49483, 97860, 193033, 376031, 735990, 1440269, 2815283, 5522803, 10827092, 21196028, 41505035, 81298779, 159266998, 311969014, 611140770, 1197086348, 2345047342, 4593936013
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2018

Keywords

Comments

Column 5 of A298888.

Examples

			Some solutions for n=7
..0..1..0..0..1. .0..0..0..1..0. .0..0..0..1..0. .0..1..1..0..1
..0..1..1..1..0. .1..1..1..0..0. .1..1..1..1..0. .1..0..0..0..1
..0..1..1..1..0. .0..0..0..0..0. .0..1..1..1..0. .1..0..0..0..1
..1..1..1..1..1. .1..0..0..0..1. .0..1..1..1..1. .0..0..0..0..0
..0..0..0..1..1. .1..0..0..0..1. .1..0..0..1..1. .1..1..1..0..0
..1..1..1..1..0. .1..0..1..1..0. .0..0..1..1..0. .0..0..0..0..1
..0..0..0..1..0. .0..0..1..0..1. .1..1..0..1..0. .1..1..1..0..1
		

Crossrefs

Cf. A298888.

A298886 Number of nX6 0..1 arrays with every element equal to 1, 2, 4, 6 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

5, 49, 34, 141, 243, 516, 814, 1646, 3312, 6565, 13040, 25941, 51679, 103895, 205265, 411011, 821599, 1643914, 3279755, 6573928, 13136700, 26293574, 52604464, 105288984, 210671989, 421821199, 844171966, 1689881070, 3382803573
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2018

Keywords

Comments

Column 6 of A298888.

Examples

			Some solutions for n=7
..0..1..0..0..1..1. .0..1..1..1..0..1. .0..1..1..0..0..0. .0..0..0..1..1..0
..1..0..0..0..0..0. .1..0..0..0..0..1. .0..0..0..1..1..1. .1..0..0..0..0..1
..0..0..0..1..0..1. .0..1..0..0..0..1. .1..1..0..0..0..0. .0..1..0..0..0..1
..1..1..1..1..0..1. .0..1..0..0..0..0. .0..0..0..0..0..1. .0..1..0..0..0..0
..0..1..1..1..0..1. .0..1..0..1..1..1. .1..1..0..0..0..1. .0..1..0..1..1..1
..0..1..1..1..1..0. .1..1..1..1..1..0. .0..0..0..1..1..0. .1..1..1..1..1..0
..1..0..0..1..1..1. .0..0..1..1..0..1. .1..1..0..1..0..1. .0..0..1..1..0..1
		

Crossrefs

Cf. A298888.

A298887 Number of nX7 0..1 arrays with every element equal to 1, 2, 4, 6 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 95, 63, 240, 444, 814, 1818, 3663, 7496, 16544, 33596, 70466, 148451, 311053, 653252, 1372584, 2873709, 6036087, 12668750, 26606071, 55876191, 117364939, 246515244, 517702247, 1087644299, 2284968402, 4799996646, 10083584000
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2018

Keywords

Comments

Column 7 of A298888.

Examples

			Some solutions for n=7
..0..1..0..1..0..0..1. .0..0..0..1..1..1..0. .0..0..1..0..0..1..1
..1..0..0..1..1..0..1. .1..0..0..0..0..0..1. .1..0..1..1..1..0..0
..0..1..1..1..0..1..0. .0..1..0..0..0..1..0. .1..0..0..0..1..1..1
..0..1..1..1..1..1..0. .0..1..0..0..0..1..0. .1..0..0..0..0..1..0
..1..1..1..1..0..1..1. .1..0..0..0..0..0..1. .0..0..0..0..1..0..0
..0..0..0..1..1..0..0. .1..0..1..0..1..0..1. .1..1..1..0..0..1..1
..1..1..1..0..0..1..0. .0..0..1..0..1..0..0. .0..0..0..1..1..0..1
		

Crossrefs

Cf. A298888.

A298884 Number of n X n 0..1 arrays with every element equal to 1, 2, 4, 6 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 3, 15, 40, 123, 516, 1818, 7768, 41048, 242083, 1483959, 10171555
Offset: 1

Views

Author

R. H. Hardin, Jan 28 2018

Keywords

Comments

Diagonal of A298888.

Examples

			Some solutions for n=7
..0..1..0..1..0..0..0. .0..1..1..0..0..1..1. .0..0..1..0..0..1..1
..1..0..0..1..1..1..1. .1..0..0..0..0..0..0. .1..0..1..1..1..0..0
..0..0..0..1..1..1..0. .1..0..0..0..1..0..1. .0..1..0..1..0..1..0
..0..0..1..1..1..1..0. .0..0..0..0..1..1..0. .0..1..1..1..1..1..1
..0..1..0..1..1..1..1. .0..0..1..1..0..1..0. .1..0..1..1..1..0..0
..0..0..1..1..0..0..0. .1..0..0..1..1..0..1. .1..0..1..1..1..0..1
..1..1..0..0..1..1..1. .1..0..1..0..0..1..0. .1..0..1..0..0..1..0
		

Crossrefs

Cf. A298888.
Showing 1-4 of 4 results.