cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298891 Number of nX4 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.

This page as a plain text file.
%I A298891 #4 Jan 28 2018 09:04:46
%S A298891 0,2,4,11,31,80,229,681,1969,5973,18031,54874,167752,513625,1575095,
%T A298891 4835994,14859480,45674676,140452387,431987865,1328865560,4088283165,
%U A298891 12578581331,38703117525,119090222855,366452309799,1127630050984
%N A298891 Number of nX4 0..1 arrays with every element equal to 2, 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
%C A298891 Column 4 of A298895.
%H A298891 R. H. Hardin, <a href="/A298891/b298891.txt">Table of n, a(n) for n = 1..210</a>
%F A298891 Empirical: a(n) = 6*a(n-1) -9*a(n-2) +5*a(n-3) -32*a(n-4) +38*a(n-5) +25*a(n-6) +98*a(n-7) -119*a(n-8) +40*a(n-9) -550*a(n-10) +580*a(n-11) -916*a(n-12) +830*a(n-13) +263*a(n-14) +83*a(n-15) +2328*a(n-16) -229*a(n-17) +503*a(n-18) -4047*a(n-19) -417*a(n-20) -3044*a(n-21) +2435*a(n-22) -11065*a(n-23) +3356*a(n-24) -5303*a(n-25) +1559*a(n-26) +14545*a(n-27) +32995*a(n-28) +22512*a(n-29) -15204*a(n-30) -12820*a(n-31) -31577*a(n-32) -21644*a(n-33) +3315*a(n-34) +18307*a(n-35) -24537*a(n-36) -14373*a(n-37) +11731*a(n-38) +26599*a(n-39) +15792*a(n-40) -11544*a(n-41) -3386*a(n-42) -4977*a(n-43) +5179*a(n-44) -2851*a(n-45) +4056*a(n-46) -977*a(n-47) +3855*a(n-48) -121*a(n-49) +305*a(n-50) -1567*a(n-51) -458*a(n-52) -273*a(n-53) +321*a(n-54) -8*a(n-55) +78*a(n-56) -20*a(n-57) -6*a(n-58) for n>59
%e A298891 Some solutions for n=7
%e A298891 ..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1
%e A298891 ..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..1..1..0. .0..1..0..1
%e A298891 ..0..0..0..0. .0..0..0..0. .0..0..0..0. .1..0..0..1. .1..0..0..1
%e A298891 ..1..1..1..1. .1..1..1..1. .0..0..0..0. .1..1..1..1. .1..1..1..1
%e A298891 ..1..0..0..1. .1..1..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0
%e A298891 ..0..1..1..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
%e A298891 ..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
%Y A298891 Cf. A298895.
%K A298891 nonn
%O A298891 1,2
%A A298891 _R. H. Hardin_, Jan 28 2018