This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A298912 #4 Jan 28 2018 18:58:21 %S A298912 1,2,9,21,25,38,45,57,93,105,121,165,194,201,202,205,206,218,253,261, %T A298912 301,315,325,326,357,361,381,385,422,453,477,482,494,506,538,542,554, %U A298912 603,614,626,633,662,746,758,765,801,841,861,873,897,921,925,934,1005,1017 %N A298912 Numbers n such that the number of groups of order n equals the number of groups of order n + 1. %H A298912 H. U. Besche, B. Eick and E. A. O'Brien, <a href="http://dx.doi.org/10.1142/S0218196702001115">A Millennium Project: Constructing Small Groups</a>, Internat. J. Algebra and Computation, 12 (2002), 623-644. %H A298912 Gordon Royle, <a href="http://staffhome.ecm.uwa.edu.au/~00013890/remote/cubcay/">Numbers of Small Groups</a> %H A298912 <a href="/index/Gre#groups">Index entries for sequences related to groups</a> %F A298912 Sequence is { n | A000001(n+1) = A000001(n) }. %p A298912 with(GroupTheory): %p A298912 for n from 1 to 300 do if NumGroups(n+1) = NumGroups(n) then print(n); fi; od; %o A298912 (GAP) Filtered([1..500], n -> NumberSmallGroups(n) = NumberSmallGroups(n+1)); %Y A298912 Cf. A000001. Numbers n having precisely k groups of orders n and n + 1: A295230 (k=2), A295990 (k=4), A295991 (k=5), A295992 (k=6), A295993 (k=8), A298427 (k=9), A (k=10), A295994 (k=11), A295995 (k=15). %K A298912 nonn %O A298912 1,2 %A A298912 _Muniru A Asiru_, Jan 28 2018