A298914 Number of n X 5 0..1 arrays with every element equal to 0, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
1, 3, 3, 4, 7, 9, 15, 26, 46, 84, 151, 276, 506, 929, 1708, 3138, 5770, 10611, 19515, 35893, 66014, 121417, 223319, 410746, 755479, 1389539, 2555759, 4700772, 8646066, 15902594, 29249427, 53798082, 98950098, 181997603, 334745780, 615693476
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1..1..1. .0..0..0..1..1. .0..0..0..0..0. .0..0..0..0..0 ..0..0..1..1..1. .0..0..0..1..1. .0..0..0..0..0. .0..0..0..0..0 ..0..0..1..1..1. .0..0..0..1..1. .0..0..0..0..0. .0..0..0..0..0 ..0..0..1..1..1. .0..0..0..1..1. .1..1..1..1..1. .0..0..0..0..0 ..0..0..1..1..1. .0..0..0..1..1. .1..1..1..1..1. .0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A298917.
Formula
Empirical: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-5) -a(n-6) -a(n-7) -a(n-8) for n>9.
Comments