A298916 Number of nX7 0..1 arrays with every element equal to 0, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
1, 8, 8, 9, 15, 24, 40, 76, 141, 277, 570, 1171, 2441, 5157, 10913, 23193, 49468, 105598, 225691, 482849, 1033370, 2212340, 4737746, 10147163, 21735151, 46560372, 99744293, 213684681, 457793103, 980778481, 2101245689, 4501796828, 9644879742
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0..1..1..1. .0..0..0..0..0..1..1. .0..0..0..0..0..0..0 ..0..0..0..0..1..1..1. .0..0..0..0..0..1..1. .0..0..0..0..0..0..0 ..0..0..0..0..1..1..1. .0..0..0..0..0..1..1. .1..1..1..1..1..1..1 ..0..0..0..0..1..1..1. .0..0..0..0..0..1..1. .1..1..1..1..1..1..1 ..0..0..0..0..1..1..1. .0..0..0..0..0..1..1. .1..1..1..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A298917.
Formula
Empirical: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-3) -9*a(n-4) +7*a(n-5) -2*a(n-6) -a(n-7) +7*a(n-8) -5*a(n-9) +3*a(n-10) -2*a(n-11) -a(n-12) +a(n-13) -a(n-14) for n>15
Comments