A298917 T(n,k) = Number of n X k 0..1 arrays with every element equal to 0, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 2, 3, 1, 1, 5, 3, 3, 3, 5, 1, 1, 8, 5, 4, 4, 5, 8, 1, 1, 13, 8, 6, 7, 6, 8, 13, 1, 1, 21, 13, 9, 9, 9, 9, 13, 21, 1, 1, 34, 21, 14, 15, 14, 15, 14, 21, 34, 1, 1, 55, 34, 22, 26, 24, 24, 26, 22, 34, 55, 1, 1, 89, 55, 35, 46, 44, 40, 44, 46, 35, 55
Offset: 1
Examples
All solutions for n=5, k=4 ..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0 ..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0 ..1..1..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0 ..1..1..1..1. .0..0..1..1. .1..1..1..1. .0..0..0..0 ..1..1..1..1. .0..0..1..1. .1..1..1..1. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..612
Formula
Empirical for column k:
k=1: a(n) = a(n-1).
k=2: a(n) = a(n-1) +a(n-2) for n>3.
k=3: a(n) = a(n-1) +a(n-2) for n>3.
k=4: a(n) = 2*a(n-1) -a(n-3).
k=5: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-5) -a(n-6) -a(n-7) -a(n-8) for n>9.
k=6: a(n) = 3*a(n-1) -2*a(n-2) +a(n-3) -2*a(n-4) -a(n-7) +2*a(n-8) for n>9.
k=7: [order 14] for n>15.
Comments