cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298917 T(n,k) = Number of n X k 0..1 arrays with every element equal to 0, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 2, 3, 1, 1, 5, 3, 3, 3, 5, 1, 1, 8, 5, 4, 4, 5, 8, 1, 1, 13, 8, 6, 7, 6, 8, 13, 1, 1, 21, 13, 9, 9, 9, 9, 13, 21, 1, 1, 34, 21, 14, 15, 14, 15, 14, 21, 34, 1, 1, 55, 34, 22, 26, 24, 24, 26, 22, 34, 55, 1, 1, 89, 55, 35, 46, 44, 40, 44, 46, 35, 55
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2018

Keywords

Comments

Table starts
.1..1..1..1..1..1...1...1...1....1....1.....1.....1......1......1.......1
.1..1..1..2..3..5...8..13..21...34...55....89...144....233....377.....610
.1..1..1..2..3..5...8..13..21...34...55....89...144....233....377.....610
.1..2..2..3..4..6...9..14..22...35...56....90...145....234....378.....611
.1..3..3..4..7..9..15..26..46...84..151...276...506....929...1708....3138
.1..5..5..6..9.14..24..44..81..156..306...602..1192...2370...4720....9415
.1..8..8..9.15.24..40..76.141..277..570..1171..2441...5157..10913...23193
.1.13.13.14.26.44..76.168.359..792.1895..4521.10886..26818..66131..163463
.1.21.21.22.46.81.141.359.873.2145.5971.16568.45898.131372.376833.1078872

Examples

			All solutions for n=5, k=4
..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0
..1..1..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0
..1..1..1..1. .0..0..1..1. .1..1..1..1. .0..0..0..0
..1..1..1..1. .0..0..1..1. .1..1..1..1. .0..0..0..0
		

Crossrefs

Columns 2 and 3 are A000045(n-1).
Column 4 is A001611(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1).
k=2: a(n) = a(n-1) +a(n-2) for n>3.
k=3: a(n) = a(n-1) +a(n-2) for n>3.
k=4: a(n) = 2*a(n-1) -a(n-3).
k=5: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-5) -a(n-6) -a(n-7) -a(n-8) for n>9.
k=6: a(n) = 3*a(n-1) -2*a(n-2) +a(n-3) -2*a(n-4) -a(n-7) +2*a(n-8) for n>9.
k=7: [order 14] for n>15.